The Traveling Tournament Problem
Description and Benchmarks

Kelly Easton!, George Nemhauser!, and Michael Trick?

! School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, Georgia USA,30332 {keaston,george.nemhauser}@isye.gatech.edu
2 Graduate School of Industrial Administration, Carnegie Mellon, Pittsburgh, PA
USA, 15213 trick@cmu.edu

Abstract. The Traveling Tournament Problem is a sports timetabling
problem that abstracts two issues in creating timetables: home/away pat-
tern feasibility and team travel. Instances of this problem seem to be very
difficult even for a very small number of teams, making it an interest-
ing challenge for combinatorial optimization techniques such as integer
programming and constraint programming. We introduce the problem,
describe one way of modeling it, and give some interesting classes of
instances with base computational results.

1 Introduction

This research was inspired by work done for Major League Baseball (MLB) in
North America. Creating a reasonable MLB schedule is a daunting task, since
thirty teams play 162 games each over a 180 day season that stretches from
early April to the end of September. While creating a playable schedule involves
juggling hundreds of requests and requirements, the key issues for a schedule
revolve around travel distance and “flow”, the pattern of home and away games
in the schedule.

While teams wish to limit the total amount they travel, teams are also con-
cerned with more traditional issues with respect to their home and away patterns.
No team likes to be away more than two weeks or so (corresponding to visiting
3 or 4 teams since teams play multiple games before moving on), nor do teams
want to be home for longer than that period.

The conflict between travel and flow is not unique to MLB. Any time teams
travel from one opponent to another leads to issues of distance and flow. In
college basketball, some leagues work on a Friday-Sunday schedule where teams
travel from their Friday game to their Sunday game directly. This has been
explored by Campbell and Chen [3] where the goal was to minimize the distance
traveled over such weekend pairs. Russell and Leung [6] had a similar travel
objective in their work for scheduling minor league baseball. In both of these
cases, the limit on the number of consecutive away games was set to two, leading
to interesting bounds based on variants of the matching problem. Many other
references to sports scheduling problems can be found in Nemhauser and Trick

[5]-



We propose a problem class called the Traveling Tournament Problem (TTP)
which abstracts the key issues in creating a schedule that combines travel and
home/away pattern issues. While it seems that either insights from sports schedul-
ing problems that involve complex home/away pattern constraints or from the
Traveling Salesman Problem (which the distance issues seem to mimic) would
make this problem reasonably easy to solve, the combination makes this problem
very difficult. Even instances with as few as eight teams are intractable relative
to the state-of-the-art. This makes the problem attractive as a benchmark: it is
easy to state and the data requirements are minimal. The fact that neither the
integer programming nor the constraint programming community has studied
this type of problem contributes to its interest. The TTP seems a good medium
for contrasting approaches and for exploring combinations of methods.

2 The Traveling Tournament Problem

Given n teams with n even, a double round robin tournament is a set of games
in which every team plays every other team exactly once at home and once away.
A game is specified by and ordered pair of opponents. Exactly 2(n — 1) slots or
time periods are required to play a double round robin tournament. Distances
between team sites are given by an n by n distance matrix D. Each team begins
at its home site and travels to play its games at the chosen venues. Each team
then returns (if necessary) to its home base at the end of the schedule.

Consecutive away games for a team constitute a road trip; consecutive home
games are a home stand. The length of a road trip or home stand is the number
of opponents played (not the travel distance).

The TTP is defined as follows.

Input: n, the number of teams; D an n by n integer distance matrix; L, U
integer parameters.

Output: A double round robin tournament on the n teams such that

— The length of every home stand and road trip is between L and U inclusive,
and
— The total distance traveled by the teams is minimized.

The parameters L and U define the tradeoff between distance and pattern
considerations. For L =1 and U = n — 1, a team may take a trip equivalent to
a traveling salesman tour. For small U, teams must return home often, so the
distance traveled will increase.

3 Modeling

The TTP is an intriguing problem not just for its modeling of issues of inter-
est to real sports leagues. First, the problem combines issues of feasibility (the
home/away patterns) and optimality (the distance traveled). Roughly, constraint



programming excels at the former (see, for instance, Henz [4]) while integer pro-
gramming does better at the latter. This combination seems to be difficult for
both methods, making the TTP a good problem for exploring combinations of
methods. Even small instances seem to be difficult. While n = 4 leads to easy
instances, n = 6 is a challenging problem, and n = 8 is still unsolved for our
sample distance matrices.

The generation of tight lower bounds is fundamental to proving optimality.
A simple lower bound is obtained by determining the minimal amount of travel
for each team independent of any other team constraint. This problem, while
formally difficult (it can easily be seen to be equivalent to a capacitated vehicle
routing problem), can be solved easily for the problem sizes of interest. The sum
of the team bounds gives a lower bound (the Independent Lower Bound or ILB)
on the TTP. We can then use this lower bound to attack the TTP.

A straightforward constraint programming formulation of this problem, even
armed with the ILB, cannot solve instances larger than n = 4. Instances with
n = 6 require some interesting search techniques. We first find a good upper
bound, then we work to increase the lower bound from ILB.

The key to our search is to order solutions by the number of trips taken
by the the teams. In general, fewer trips means less distance traveled because
a team does not have to return home too often. Let a pattern be a vector of
home and away designations, one for each slot. Let a pattern set be a collection
of patterns, one for each team. It is easy generate pattern sets in increasing
order of the number of trips. For a given pattern set, forcing a solution to match
that set is a much easier problem, and is the basis of a large part of the sports
scheduling literature (see [5] for references). We can therefore generate pattern
sets by increasing number of trips and find the minimum length distance for
each pattern set. Once we have a feasible solution, we can add a constraint that
we only want better solutions, which will further speed the computation.

We do not want, however, to work with all the pattern sets: there are far
too many even for n = 6. Instead, we can modify ILB to include a minimum
total number of trips constraint. Once the ILB with this constraint is above our
feasible solution, we know that we do not need to consider any pattern with
more trips.

This method generally finds very good solutions quickly and can prove opti-
mality for small instances. For larger instances, we have worked on a combination
of integer and constraint programming methods involving column generation ap-
proaches [1]. In these models, the variables correspond to higher level structures,
including road trips, homestands, and even complete team schedules. Constraint
programming methods are used to generate variables that are then combined us-
ing integer programming techniques. Success depends heavily on the initial set of
variables and on the branching rules used. For more detail on this, see the longer
version of this paper, available from the web page http://mat.gsia.cmu.edu/TTP.



4 Instance Classes and Computational Results

We propose two problem classes for algorithmic experiments of the TTP. The
first is an artificial set of instances designed to determine the effect of the TSP
aspects of the TTP. The second is a series of instances from Major League
Baseball which provided the original inspiration for this work.

Circle instances. Arguments for the complexity of TTP revolve around the
embedded traveling salesman problem. It is not clear, however, that the TTP is
eagy even if the TSP is trivial. We explore this with this instance class where
the TSP is easily solved (and for which the solution is unique) but the TTP still
seems to be challenging.

The n node circle instance (denoted CIRCn) has distances generated by the
n node circle graph with unit distances. In this graph, the nodes are labeled
0,1,...n — 1; there is an edge from ¢ to i + 1 and from n — 1 to node 0, each
with length 1. The distance from ¢ to j (with ¢ > j) is the length of the shortest
path in this graph, and equals the minimum of ¢ — j and j — i + n.

In this graph, 0,1,...,n —1 gives the optimal TSP tour. Does this make the
TTP easy?

National League Instances. As stated in the introduction, the primary
impetus for this work was an effort to find schedules for Major League Baseball.
Unfortunately, MLB has far too many teams for the current state-of-the-art for
finding optimal solutions. MLB is divided into two leagues: the National League
and the American League. Almost all of the games each team plays are against
teams in its own league, so it is reasonable to limit analysis to an individual
league.

We have generated the National League distance matrices by using “air dis-
tance” from the city centers. To generate smaller instances, we simply take
subsets of the teams. In doing so, we create instances NL4, NL6, NL8, NL10,
NL12, NL14, and NL16, where the number gives the number of teams in the
instance. All of these instances are on the challenge page associated with this
work: http://mat.gsia.cmu.edu/TOURN.

4.1 Computational Results

We have attempted to solve the benchmark instances using a wide variety of
techniques, including those given in Section 3. In general, size 4 instances are
trivial, size 6 instances are difficult, and size 8 and larger instances are unsolved.
In Table 1, we give bound values for some of the instances. Computation time
seems less interesting for these instances at this stage due to their difficulty. In
short, size 4 problems take at most a couple of seconds, size 6 solutions are found
in between 1 and 4 hours, and we have spent days of computation time on the
size 8 instances without proving optimality (the results in the table are the best
bounds from all of our efforts).



Name U IB LB UB Optimal?
NI1L4 3 8276 8276 Y
NL6 3 22969 23916 23916 Y
NL8 3 38670 38870 41113

NL16 3 248,852 248,852 312,623

CIRC4 3 16 20 20 Y
CIRC6 3 60 64 64 Y

2

CIRCS 128 128 148

Table 1. Some Benchmark Results for Challenge Instances

5 Conclusions and Future Directions

We propose the TTP as a benchmark problem for two primary reasons:

1. The problem has practical importance in modeling important issues from
real sport schedules

2. The mix of feasibility and optimality, together with no long history in ei-
ther field, make the problem interesting to both the operations research and
constraint programming communities.

The proposed instances seem to be unusually difficult for either constraint
programming or integer programming alone. One interesting study of some of
these instances has been given by Benoist, Laburthe, and Rottembourgh [2] who
propose an algorithm combining lagrangean relaxation and constraint program-
ming. While their results to date have not been competitive with the techniques
in this work, their paper does exactly what we hoped would happen with these
instances: spurring research in combining different methods to solve hard com-
binatorial problems.

References

1. Barnhart, C., E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H.Vance.
1998. “Branch-and-Price: Column Generation for Huge Integer Programs”, Opera-
tions Research 46: 3, 316- 329.

2. Benoist, T., F. Laburthe, and B. Rottembourg, 2001. “Lagrange relaxation and
constraint programming collaborative schemes for traveling tournament problems”,
CPAI-OR, Wye College, UK, 15-26.

3. Campbell, R.T., and D.S. Chen, 1976. “A Minimum Distances Basketball Scheduling
Problem”, in Optimal Strategies in Sports, S.P. Ladany and R.E Machol (eds.),
North-Holland, Amsterdam, 32-41.

4. Henz, M. 2001. “Scheduling a Major College Basketball Conference: Revisted”, Op-
erations Research, 49:1,.

5. Nemhauser, G.L. and M.A. Trick. 1998. “Scheduling a Major College Basketball
Conference”, Operations Research, 46, 1-8.

6. Russell, R.A. and J.M Leung. 1994. “Devising a cost effective schedule for a baseball
league”, Operations Research 42, 614-625.



