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Abstract. The Traveling Tournament Problem is a sports timetabling
problem that abstracts the important issues in creating timetables where
team travel is an important issue. Instances of this problem seem to
be very difficult to solve even for very small cases. Given the practical
importance of solving instances similar to these, this makes this problem
an interesting challenge for combinatorial optimization techniques. We
introduce this problem, give some interesting classes of instances and
give some base computational results.

1 Introduction

Professional sports leagues are big businesses around the world. In the United
States, television networks pay more than $400 million per year for nationally
televised baseball games alone, with that much again for local presentations.
Even college basketball leagues such as the Atlantic Coast Conference take in
more than $30 million per year in radio and television fees. The UK football team
Manchester United, a publicly traded company, has a market capitalization of
more than £400 million; the Premiership receives more than £100 million for
overseas television rights alone. The Italian Serie A are Spanish Premira Liga
are not far behind in total income.

One key to such income levels is the schedule the teams play. No rights-holder
wants to pay large sums only to get unattractive teams playing on a prime date.
Teams do not want to see their large investments in players and infrastructure
undermined by poor scheduling. Fans, who ultimately provide the income for
the leagues, are also greatly affected by schedules.

In addition to these large, successful leagues, there are a countless number of
smaller leagues that need schedules. These leagues range from lower divisional



professional sports down to weekend recreational leagues, and often have needs
that make finding suitable schedules difficult.

Given these demands, it is not surprising that creating sports schedules is
an active research area. Examples of recent papers include schedules for minor
league baseball (Russell and Leung [8]), college basketball (Ball and Webster [1];
Nemhauser and Trick [7]; Walser [13]; Henz [5]), Australian basketball (de Werra,
Jacot-Descombes, and Masson [16]), and Dutch professional football (Schreuder
[11]).

Despite this flurry of research, there are important issues that have not been
well studied. This research was inspired by work done for Major League Baseball
(MLB) in the United States. MLB, together, with the National Football League,
the National Basketball Association, and the National Hockey League, is one of
the “Big Four” sports in the United States, dominating the sports airwaves dur-
ing the summer months. From a scheduling point of view, creating a reasonable
schedule is a daunting task, since thirty teams play 162 games each over a 180
day season that stretches from early April to the end of September. In terms
of total number of games, no published work has addressed problems anywhere
near this size.

The MLB schedule is further complicated by the distances involved. Teams
in MLB stretch from the American east coast to the west coast and from Canada
to the tip of Florida. In order to reduce the amount of travel, teams go on “road
trips”, where they will visit a number of opposing teams before returning home
(this contrasts to leagues with just one or two games in a week where teams
return home after every game). Total travel becomes an important issue for
MLB teams.

In addition this wish to keep travel down, teams are also concerned with
more traditional issues with regards to their home and away patterns. No team
likes to be away more than two weeks or so (corresponding to visiting 3 or 4
teams since teams play multiple games before moving on), nor do teams want to
be home for longer than that period. Issues with the home/away pattern lead to
questions of the ideal flow of the schedule, which can vary from league to league.

For any particular year, the MLB schedule instance is a very complicated
set of requirements and requests. For the 1999-2000 schedule, team requests
alone amounted to more than one hundred pages of questionnaire responses.
Added to this were a large number of television, league, and union requests and
requirements. Simply defining the problem is a difficult task.

They key to the MLB schedule, however, is the conflict between travel dis-
tances and the home/away pattern. If this can be solved in a reasonable amount
of time, additional constraints and objectives can be added to approach the
real instance. Without an approach for the core problem, however, it is unlikely
that suitable schedules are creatable (it should be noted that MLB has used
a husband-and-wife team named Henry and Holly Stephenson to create their
schedules for two decades: their ability to create playable schedules without ap-
parently using advanced combinatorial optimization software is quite amazing).



This conflict between travel and flow is not unique to MLB. Any time teams
travel from one opponent to another leads to issues of distance and flow. In
college basketball, some leagues work on a Friday-Sunday schedule where teams
travel from their Friday game to their Sunday game directly.

We propose a problem class called the Traveling Tournament Problem which
abstracts the key issues in creating a schedule that combines travel and home/away
pattern issues. While it seems that either current scheduling software (which
concentrates on home/away patterns) or insights from the Traveling Salesman
Problem (which the distance issues seem to mimic) would make this problem
reasonably easy to solve, it seems that the combination make the problem very
difficult. Even instances with as few as eight teams are intractable relative to
the state-of-the-art. This makes the problem attractive as a benchmark: it is
easy to state and the data requirements are minimal. The fact that multiple
communities, including the integer programming and constraint programming
communities, have studied similar problems without addressing this particular
problem contributes to its interest, for this problem seems a good problem for
contrasting approaches and for exploring combining methods.

In the next section, we define the traveling tournament problem and show
its computational complexity. Section 3 gives a variety of approaches for solving
this problem; the following section develops particular instance classes and gives
our arguments for the particular choices we have made. This section also gives
computational results for these instances We conclude with some speculations
on approaches that may work well.

2 The Traveling Tournament Problem

Given n teams, n even, a round-robin tournament is a tournament among the
teams so that every team plays every other team. Such a tournament has n — 1
slots during which n/2 games are played. For each game, one team is denoted
the home team and its opponent is the away team. As suggested by the name,
the game is held at the venue of the home team (this differs from other situations
where all teams travel to a single venue). A double round-robin tournament has
2(n — 1) slots and has every pair of teams plays twice, once at home and once
away for each team.

Distances between team sites are given by an n by n distance matrix D.
When a team plays an away game, it is assumed to travel from its home site to
the away venue. When playing consecutive away games, teams travel from one
away venue to the next directly. Each team begins the tournament at its home
site, and must return to home at the end of the tournament.

Consecutive away games for a team constitute a road trip; consecutive home
games are a home stand. The length of a road trip or home stand is the number
of opponents played (not the travel distance).

The Traveling Tournament Problem (TTP) is as follows:

Input: n, the number of teams; D an n by n integer distance matrix; L, U
integer parameters.



Output: A double round robin tournament on the n teams such that

— The length of every home stand and road trip is between L and U inclusive,
and
— The total distance traveled by the teams is minimized.

In addition to the basic constraints, there may be additional requirements
on the solution. These include:

— Mirrored. The double round robin tournament must have a round robin
tournament in the first n — 1 slots and then have the same tournament with
venues reversed in the second n — 1 slots.

— No Repeaters. There are no teams ¢, j such that ¢ plays at j and then j plays
at ¢ in the next slot.

We will refer to the two variants (note that mirrored tournaments have no
repeaters) as the Traveling Tournament Problem/Mirrored (TTP/Mirror) and
the Traveling Tournament Problem/No Repeaters (TTP/No Repeat).

The parameters L and U define the tradeoff between distance traveled and
the length of the home stands and road trips. For L = 1, U = n allows for team
schedules as short as the length of the traveling salesman tour of the cities; for U
small, the team has to return often to the home site, so the schedules resemble
that of vehicle routing solutions.

For U =1, it is easy to see that there is no solution for n > 2. In this case,
the only feasible home/away sequences are alternating home and away. There
are only two such sequences (one beginning at home and one beginning away),
so if there are more than 2 teams, two teams will have the same sequence. Such
teams, however, cannot play each other so no round robin tournament is possible.

For U = 2, all away trips consist of either a single team or pairs of teams. This
structure corresponds to a (slight generalization of ) matching. This suggests this
case may be polynomially solvable, though we have not found an algorithm to
date.

2.1 Solution Methods

The Traveling Tournament Problem, is an intriguing problem not just for its
modeling of issues of interest to real sports leagues. First, the problem combines
issues of feasibility (with regards to issues of home/away patterns) and optimality
(with regards to the distance traveled). Roughly, constraint programming excels
at the former (see, for instance, Henz [5]) while integer programming does better
at the latter. This combination seems to be difficult for both methods, making
the TTP a good problem for exploring combinations of methods. Second, even
small instances seem to be difficult. While n = 4 leads to easy instances, n = 6
is a challenging problem, and n = 8 is still unsolved for our sample distance
matrices.



Fundamental for our approaches to solving this problem is the generation of
tight lower bounds. The most useful bound is given by determining the minimal
amount of travel for each team independent of any other team constraint.

Given a single team ¢, what is the minimal amount it must travel? This
problem can be solved in a number of ways. For relatively small n and U, the
easiest way to solve this is to generate all subsets of the teams of size between
L and U. For each subset, there is an optimal tour for i visiting the subset.
This value can be found by enumeration (if the set is small enough) or through
combinatorial optimization techniques for the TSP (see, for instance Caseau and
Laburthe [3] for constraint programming methods).

We are then faced with the problem of finding a collection of the subsets of
minimum cost that contains all of the cities. If the set of subsets for city 7 is
denoted S, with members s; each with a cost of ¢;, a formulation of the problem
to be solved is

Minimize ) ¢;z;

Subject to

D (jkes;y i =1forall k € {L.n}, k #1
zj € {0, 1}

This subproblem can be solved with standard techniques (we use either in-
teger programming or constraint programming within OPL [6]).

Summing over all teams, we get a bound on the overall TTP. We call the
resulting lower bound the Independent Bound (IB).

To find feasible solutions and to prove the optimality of those solutions,
we have developed two approaches: a constraint programming approach and an
integer programming approach.

2.2 Constraint Programming

In Nemhauser and Trick [7], we solved a practical sports scheduling approach
with a three phase approach: in the first phase, a collection of home/away pat-
terns were chosen; in the second, game assignments were made consistent with
those patterns; in the final phase, a team was assigned to each pattern, complet-
ing the schedule. This approach was improved by Henz [5], who suggested using
constraint programming for each of the phases.

A straightforward implementation of this three-phase method does not work
for the TTP: the number of feasible pattern sets is enormous even for small
n. We can, however, modify this approach to solve problems up to size 6 and
provide approximate solutions for larger .

To get a good upper bound, we would like to find a good feasible solution.
Since the objective is to minimize travel, it is generally the case that home/away
patterns with fewer trips are better. Rather that generate all pattern sets, we
can generate pattern sets in order of the number of trips they contain. This is
a straightforward problem that can solved with most constraint programming
packages.



Once we have a pattern set with a small number of trips, we can assign
teams to the pattern set and minimize the distance they travel. This again is a
straightforward problem (see Henz [5] for one closely related formulation).

By starting with a small number of trips, we generally quickly find a very
good feasible solution. For small instances, we can extend this to prove optimality
by strengthening the IB lower bound, as follows:

Given a feasible solution with K trips, we resolve the lower bound with an
additional constraint that the number of trips (over all teams) is at least K. If
this bound is no better than our feasible solution, we can terminate; otherwise
we enumerate all feasible pattern sets with K trips, and resolve the bound with
K+1.

The resulting method generally finds very good solutions quickly, and can
prove optimality for small instances. For larger instances, the enumeration re-
quired before IB becomes binding can be very time consuming.

2.3 Integer Programming Approach

An alternative formulation is a generalization of the IB formulation that fully
models the problem. This approach requires the generation of all possible trips;
for example, Team 1 plays at (Team 4, Team 2, Team 3) starting in slot 3 is one
trip. These trips are the foundation for an integer programming model. Every
trip has a binary variable z; that is 1 if and only if trip j is selected. The
formulation is then fairly straightforward. The following are the constraint sets:

Each team must play each opponent exactly once.

Each team must play exactly one game per slot.

— Trips cannot be scheduled back to back (so no away trip followed by another
away trip)

Every U slots must have at least one trip.

We can also use the results for IB to add constraints that force every team to
travel at least its lower bound. This constraint substantially improves run time.
The objective is the sum of distances associated with the selected trips.

3 Instance Classes and Computational Results

We propose two problem classes for algorithmic experiments of the TTP. The
first is an artificial set of instances designed to determine the effect of the TSP
aspects of the TTP. The second is a series of instances from Major League
Baseball which provided the original inspiration for this work.

3.1 Circle instances

Arguments for the complexity of TTP revolve around the embedded traveling
salesman problem. It is not clear, however, that the TTP is easy even if the TSP



is trivial. We explore this with this instance class where the TSP is easily solved
(for which the solution is unique) but the TTP still seems to be challenging.

The n node circle instance (denoted CIRCn) has distances generated by the
n node circle graph with unit distances. In this graph, the nodes are labeled
0,1,...n — 1; there is an edge from ¢ to ¢ + 1 and from n — 1 to node 0, each
with length 1. The distance from 7 to j (with ¢ > j) is the length of the shortest
path in this graph, and equals the minimum of ¢ — j and j — i + n.

In this graph, 0,1,...,n —1 gives the optimal TSP tour. Does this make the
TTP easy?

We suggest two types of instances for each size: one with U = n and one with
U =3 (L =1 in each type).

3.2 National League Instances

As given in the introduction, the primary impetus for this work was an effort to
find schedules for Major League Baseball. Unfortunately, MLLB has far too many
teams for the current state-of-the-art for finding optimal solutions. MLB is di-
vided into two leagues: the National League and the American League. Almost
all of the games each team plays are against teams in its own league, so it is
reasonable to limit analysis to an individual league. The National League has 16
teams; the American League has 14 teams. Leagues are not defined geographi-
cally: each league has teams on both the US east coast and US west coast and
scattered in between. Each league also has a single Canadian team (Montreal in
the NL, Toronto in the AL).

We have generated the National League distance matrices by using “air dis-
tance” from the city centers. To generate smaller instances, we simply take sub-
sets of the teams. In doing so, we create instances NL4, NL6, NL8, NL10, NL12,
NL14, and NL16, where the number gives the number of teams in the instance.

3.3 Computational Results

We have attempted to solve the benchmark instances using a wide variety of
techniques, including those given in previous sections. In general, size 4 instances
are trivial, size 6 instances are difficult, and size 8 and larger instances are
unsolved. In Table 1, we give bound values for each of the instances. Computation
time seems less interesting for these instances at this stage due to their difficulty.
In short, size 4 problems take at most a couple of seconds, size 6 solutions are
found in between 1 and 4 hours, and we have spent days of computation time on
the size 8 instances without proving optimality. All of these results are on the
challenge page associated with this work: http://mat.gsia.cmu.edu/TOURN.

4 Conclusions and Future Directions

We propose the Traveling Tournament Problem as a benchmark problem for two
primary reasons:



Name U 1B LB UB Optimal?
CIRC4 3 16 20 20 Y
CIRC6 3 60 64 64 Y
CIRC8 3 128

CIRC10 3 220

CIRC12 3 348

CIRC14 3 588

CIRC16 3 832

CIRC18 3 1188

CIRC20 3 1400

CIRC4 3 16 20 20 Y
CIRC6 5 36

CIRC8 7 64

CIRC10 9 100

CIRC12 11 144

CIRC14 13 196

CIRC16 15 256

CIRC18 17 324

CIRC20 19 400

NL4 3 8276 8276 Y
NL6 3 22969 23916 23916 Y
NL8 3 38670 38870 41113

NL10 3

NL12 3

NL14 3

NL16 3 248,852 248,852 312,623

Table 1. Benchmark Results for Challenge Instances



1. The problem has practical importance in modeling important issues from
real sport schedules

2. The mix of feasibility and optimality, together with no long history in ei-
ther field, make the problem interesting to both the operations research and
constraint programming communities.

The resulting instances seem to be unusually difficult for either constraint
programming or integer programming alone. One interesting look at these in-
stances has been given by Benoist, Laburthe, and Rottembourgh [2]. They com-
bine lagrangean relaxation and constraint programming to attack this problem.
While their results to date have not been competitive with the techniques in this
work, their paper does exactly what we hoped with these instances: spurring re-
search in combining different methods to solve hard combinatorial problems.



10

References

1. Ball, B.C. and D.B. Webster. 1977. “Optimal scheduling for even-numbered team
athletic conferences”, AIIE Transactions 9, 161-169.

2. Benoist, T., F. Laburthe, and B. Rottembourg, 2001. “Lagrange relaxation and
constraint programming collaborative schemes for traveling tournament problems”,
CPAI-OR, Wye College, UK, 15-26.

3. Caseau, Y. and F. Laburthe. 1997. “Solving Small TSPs with Constraints”, Pro-
ceedings of the 14th International Conference on Logic Programming, L. Naish, Ed.,
The MIT Press.

4. Henz, M. 1999. “Constraint-based Round Robin Tournament Planning”, Proceed-
ings of the 1999 International Conference on Logic Programming, Las Cruces, NM.

5. Henz, M. 2000. “Scheduling a Major College Basketball Conference: Revisted”, Op-
erations Research, to appear.

6. ILOG. 2000. “ILOG OPL Studio”, User’s Manual and Program Guide.

7. Nemhauser, G.L. and M.A. Trick. 1998. “Scheduling a Major College Basketball
Conference”, Operations Research, 46, 1-8.

8. Russell, R.A. and J.M Leung. 1994. “Devising a cost effective schedule for a baseball
league”, Operations Research 42, 614-625.

9. Schaerf, A. 1999. “Scheduling Sport Tournaments using Constraint Logic Program-
ming”, Constraints 4, 43-65.

10. Schreuder, J.A.M. 1980. “Constructing timetables for sport competitions”, Math-
ematical Programming Study, 13, 58-67.

11. Schreuder, J.A.M. 1992. “Combinatorial aspects of construction of competition
Dutch Professional Football Leagues”, Discrete Applied Mathematics 35, 301-312.

12. Wallis, W.D. 1983. “A tournament problem”, Journal of the Australian Mathe-
matics Society Series B, 24, 289-291.

13. Walser, J.P. 1999. Integer Optimization by Local Search: A Domain-Independent
Approach, Springer Lecture Notes in Artificial Intelligence 1637, Springer, Berlin.

14. de Werra, D. 1980. “Geography, games, and graphs”, Discrete Applied Mathemat-
ics 2, 327-337.

15. de Werra, D. 1988. “Some models of graphs for scheduling sports competitions”,
Discrete Applied Mathematics 21, 47-65.

16. de Werra, D., L. Jacot-Descombes, and P. Masson. 1990. “A constrained sports
scheduling problem”, Discrete Applied Mathematics 26, 41-49.



