Integer and Constraint Programming
Approaches for Round Robin Tournament
Scheduling

Michael A. Trick

Graduate School of Industrial Administration, Carnegie Mellon, Pittsburgh, PA USA,
15213 trick@cmu.edu

Abstract. Real sports scheduling problems are difficult to solve due to
the variety of different constraints that might be imposed. Over the last
decade, through the work of a number of researchers, it has become easier
to solve round robin tournament problems. These tournaments can then
become building blocks for more complicated schedules. For example,
we have worked extensively with Major League Baseball on creating
“what-if” schedules for various league formats. Success in providing those
schedules has depended on breaking the schedule into easily solvable
pieces. Integer programming and constraint programming methods each
have their places in this approach, depending on the constraints and
objective function.

1 Introduction

There has been a lot of recent work on combinatorial optimization methods
for creating sports schedules. Much of this work has revolved around creating
single round-robin schedules, where every team plays every other team once, and
double round-robin schedules, where every team plays every other team twice
(generally once at its home venue and once at each opposing venue).

Round-robin scheduling is interesting in its own right. Some leagues have
a schedule that is a single or double round-robin schedule. Examples of this
include many U.S. college basketball leagues and many European football (soc-
cer) leagues. For such leagues, the scheduling problem is exactly a constrained
round-robin scheduling problem, where the constraints are generated by team
requirements, league rules, media needs, and so on.

For other leagues, the schedule is not a round-robin schedule but it can be
divided into sections that are round-robins among subsets of teams. There are
good reasons, both algorithmically and operationally, to make these divisions.
By creating these sections, schedulers are able to use results about round-robin
schedules to optimize the pieces. Operationally, such schedules are often appeal-
ing to the leagues since they offer an understandable structure and often are
perceived as being fairer than unstructured schedules. For instance, by schedul-
ing four consecutive round-robins, each team will see each other in each quarter
of the schedule; an unstructured schedule would not necessarily require that.

This work was originally motivated by by looking at a large practical schedul-
ing problem, that of Major League Baseball (MLB). Fully defining the MLB
schedule is a daunting task, requiring the collation of more than 100 pages of
team requirements and requests, along with an extensive set of league practices.
The key insight into effectively scheduling MLB, however, was the recognition
that the complicated schedule could generally be broken into various phases,
where each phase consists of a round-robin schedule, sometimes among subsets
of teams. These round-robin schedules often have additional constraints reflect-
ing team requirements or effects from other phases of the schedule. By better
understanding constrained round-robin scheduling, we are better able to sched-
ule MLB.

2 Round Robin Scheduling

We begin with the most fundamental problem in sports scheduling: designing
an unconstrained round robin schedule. In a round robin schedule, there are an
even number n teams each of whom plays each other team once over the course
of the competition. We will work only with compact schedules: the number of
slots for games equals n — 1, so every team plays one game in every slot. We
refer to this as a Single Round Robin (SRR) Tournament.

A related problem is the Bipartite Single Round Robin (BSRR) Tournament
problem. Here, the teams are divided into two groups X and Y, each with n/2
teams. There are n/2 slots during which all teams in X need to play all teams
in Y, but teams within X (and within Y') do not play each other.

Henz, Miiller, and Thiel [12] (who we will refer to as HMT) have recently
examined SRR carefully in the constraint programming context. We expand on
their work by examining integer programming formulations and further exploring
the strengths and weaknesses of the different approaches.

HMT point out that the SRR can be formulated with two major types of
constraints. First, the games in every slot correspond to a one-factor (or match-
ing) of the teams. Second, for any team 4, its opponents across all of the slots
must be exactly the set of teams except for 7. We will call the first the one-factor
constraint and the second the all-different constraint. Different formulations have
different ways of encoding and enforcing these constraints.

3 Integer Programming Formulation

Our basic integer program for SRR begins with binary variables x;;; which is 1
if teams ¢ and j play each other in slot ¢, and is 0 otherwise. Since the order of 4
and j does not matter, we could either define this only for i > j or set ;5 = zji
for all 4, 7,1.

This leads to the formulation (in the OPL language[25]):

int n=...;
range Teams [0..n-1];

range Slots [1..n-1];
range Binary 0..1;
var Binary plays[Teams,Teams,Slots];

solve {
//No team plays itself
forall (i in Teams, t in Slots) plays[i,i,t] = 0;

//Every team plays one game per slot
//One-factor constraints
forall (ordered i,j in Teams, t in Slots)
plays[i,j,t] = plays[j,i,t];
forall (i in Teams, t in Slots)
sum (j in Teams) playsl[i,j,t] = 1;

//Every team plays every other team
//Al1-different constraint
forall (i,j in Teams: i<>j) sum(t in Slots) plays[i,j,t] = 1;

};

We call the above the Base-IP Formulation. We can strengthen this for-
mulation by a stronger modeling of the one-factor constraint. The polyhedral
structure of the one-factor polytope is perhaps the most well-studied polytope
in combinatorial optimization. Edmonds [9] showed that the polytope is defined
by adding odd-set constraints. In this context, the odd set constraints are as
follows. For a particular slot ¢, let S be a set of teams, |S| odd. Then,

sumiesngsx,-jt Z 1

is valid for the one-factor constraint. If we add all of these constraints, then the
one-factor constraint is precisely defined in the polyhedral sense (all extreme
points of the polyhedron are integer).

We call the formulation with all of the odd-set constraints the Strong-IP for-
mulation. Of course, there are too many odd-set constraints to simply add them
all to the integer program. We can solve Strong-IP by using a constraint genera-
tion method. In this method, we begin with a limited set of odd-set constraints
and solve the linear relaxation of the instance. We then identify violated odd-set
constraints (this can be done with a method by Padberg and Rao [16] using cut-
trees) and add them to the formulation. We repeat until either we have added
“enough” constraints or until all odd-set constraints are satisfied. At that point,
we then continue our normal branch and bound approach to integer programs.

Strong-IP is not needed for the BSRR problem. In this case, the odd set
constraints are redundant, so need not be added.

4 Constraint Programming Formulation

HMT extensively analyze constraint programming formulations for SRR. Their
basic variables are opponent[i,t] which gives the opponent i plays in slot ¢.
Their formulation can be represented very simply:

int n=...;

range Teams [0..n-1];

range Slots [1..n-1];

var Teams opponent[Teams,Slots];

solve {
//No team plays itself
forall (i in Teams, t in Slots) opponent[i,t] <>i;

//Every team plays one game per slot
//One-factor constraint
forall (t in Slots)

one-factor(all (i in Teams) opponent[i,t]);

//Every team plays every other team
//All1-different constraint
forall (i in Teams)

all-different(all (t in Slots) opponent[i,t]);

};

The key issue is to define how the one-factor and all-different constraints
are implemented. There are a variety of propagation algorithms available for
each. HMT argues convincingly that the all-different constraint should use arc-
consistent propagation by the method of Régin [17]. Briefly, arc-consistency
means that the domains of the variables are such that for any value in a do-
main, setting the variable to that value allows settings for all the other variables
so that the constraint is satisfied. For more details on the fundamentals of con-
straint programming, see [14].

For the one-factor constraint, the main emphasis of HMT, they examine three
different approaches. The first is the simplest. It uses the constraints:

forall (i in Teams)
opponent [opponent [i,t]] = i;

This set of constraints is sufficient to define the one-factor constraint, but
its propagation properties are not particularly strong. In particular, the only
domain reduction that is done is when i is in the domain for j for a particular
time period ¢, but j is not in the domain of i for that time period. In that case,
i can be removed for the domain of j.

The propagation properties of this constraint can be improved by adding the
redundant constraint:

all-different(all (i in Teams) opponent[i,t]);

HMT give an example where adding the all-different constraint leads to im-
proved domain reduction. We call this combination the all-different one-factor
approach.

The combination of these constraints do not create an arc-consistent propa-
gation for the one-factor constraint. HMT provide an arc-consistent propagation
method using results from non-bipartite matchings. In general, this approach
is much better than the all-different approach. The exceptions mimic when the
Strong-IP does not improve on Basic-IP: if the underlying graph is bipartite,
then the all-different approach is arc-consistent.

To prove this, let D; be the feasible opponents for i. We say the D; are
bipartite if we can divide the teams into X and Y such that

1. |X| =|V]| = n/2
2.i€eX > D;CY
3.i€Y 5 D; CX

Theorem 1. If the D; are bipartite, then arc-consistency for the constraints

forall (i in Teams)
opponent [opponent[i]] = i;
all-different (opponent[i]) ;

implies arc-consistency for one-factor (opponent)

Proof. Suppose the D; are consistent for the constraints

forall (i in Teams)
opponent [opponent[i]] = i;
all-different (opponent) ;

Let j € D;. We will show there is a one-factor that has j as the opponent
for 4. Without loss of generality, we will assume j € Y, so ¢ € X. By consis-
tency of the all-different constraint, there is a setting of opponent values so that
j=opponent[i], and all-different [opponent]. Create a new setting of the
opponent values opponent’ such that opponent’[i] = opponent[i] for i € X
and opponent’[i] = opponent[opponent[i]] for ¢ € Y. By the consistency
requirement, opponent’[i] € D; for all 7. opponent’ is therefore a one-factor
that has j=opponent[i] as required. O

Therefore, for either BSRR, or for cases where the home/away pattern for a
time slot is fixed (creating a bipartition between teams that need to be home
versus those that need to be away), one-factor propagation can be replaced by
all-different propagation.

5 Computational Tests

If there were no further requirements on the schedules, creating a SRR schedule
would be straightforward. Kirkman (1847) gave a method for creating such a
schedule (outlined in [1]) which also shows there is an ordering of the decision
variables such that a constraint program would not need to backtrack in assigning
variables (provided arc-consistent approaches to the all-different constraint is
used).

Most league schedules have a number of additional constraints, however. A
few of the most common are:

— Fixed games. A set of games are fixed to occur in certain slots.

— Prohibited games. A set of games are fixed not to occur in certain slots.

— Home/Away restrictions. Each team has a home venue, and each game must
be assigned to a venue. There are additional constraints on such things as
the permitted number of consecutive home or away games.

It might seem that adding constraints would make the problem easier, since
it reduces the possible search space. In fact, adding fixed games (or, equivalently,
prohibiting games) can make the relatively easy problem of finding a schedule
become an NP-complete problem. This has been shown by Colbourn [5] for the
bipartite SRR case, where a schedule is equivalent to a Latin Square, and by
Easton for the general SRR case. So it is clear that there may be very difficult
instances of these restricted problems.

There may also be an objective function to be optimized. For instance, there
may be an estimate c¢;j; for the number of people who would attend a game
between i and j during time slot ¢. Can we maximize the total number of people
who attend games during the tournament?

All the testing in this paper was done using ILOG’s OPL Studio version 3.5
([13]) running under Windows XP on a 1.8Gz Pentium IV processor computer
with 512Mb of memory.

5.1 Tightly Constrained Round Robin Tournaments

For our first test, we use a data set from HMT, called “Tightly Constrained
Round Robin Tournaments”. For these instances, there are random forbidden
opponents, with a sufficient number to lead to instances with very few or no
feasible schedules.

For this test, we compare two codes: Basic-IP and the all-different constraint
program. Our codes were implemented within the OPL system, version 3.5 and
used default branching strategies for the integer program and default search
strategies for the constraint program.

In addition, we repeat the computational results of HMT for their arc-
consistent one-factor method. To offset different machine capabilities, we di-
vided their computation times by 4.5 to represent a rough approximation of the
difference between their 400Mz machine and our 1.8Gz machine.

For each instance, we give the number of failures (F) in the search tree
(for the constraint programs) or number of nodes (N) in the search tree (for the
integer program) as well as the computation time in seconds. In the following the
instances that end in “yes” are feasible, though generally with a small number
of solutions; those that end in “no” are infeasible. For feasible problems, the
timing for HMT includes work needed to find all solutions, while those for the
IP and the all-different CP only find the first solution. This suggests that the
“no” instances, where the codes perform the same task, is the fairer comparison.

Problem n |all-different |Basic-IP| HMT

F TfT N T F T
s_6_yes 6 5 0.00] 0 0.01] 40.01
s8_yes 8 17 0.01| 4 0.04| 10 0.04
s_10_yes 10 4 0.02| 10.09] 10.02
s_12_yes 12| 376 0.41| 57 0.46(179 1.39
s_14_yes 14 862 1.24(276 5.54(527 4.53
s6no 6 3 0.000 00.01] 40.00
s8no 8 11 0.01| 10 0.04| 6 0.01
s_.10_no 10 23 0.02 4 0.10| 6 0.03
s_12no 12 24 0.07 0 0.14| 25 0.17
s_.14_.no 14| 135 0.23| 50 1.02| 69 0.56
s_.16_.no 16 79 0.30| 0 0.39| 86 1.19
s_18 no 18 43 0.32| 0 0.42| 30 0.50
s_20_no 20(696.30 5.47| 0 0.78|254 5.11

Table 1. Benchmarks on Tightly Constrained SRR

Basic-IP is competitive with the constraint programming approaches, and
can do markedly better in proving infeasibilty (as in s_20_no).

This table might lead to the conclusion that these tightly constrained SRR
problems are relatively easy to solve in this size range. That is not the case. The
instance s_16 no is actually just one of a series of instances, corresponding to
varying numbers of prohibited games. The instance begins with 1192 prohibited
games. The timing above corresponds to prohibiting all but the final 7 of the
prohibited games. We can create new instances by varying the number of pro-
hibited games. The instances remain infeasible through prohibiting all but the
final 54 games, and which point the instance becomes feasible.

The computational effort for these instances varies tremendously for the
Basic-IP and the all-different approaches. Basic-IP does poorly for a broad range
of prohibitions (the good behavior above is an anomoly). For instance, the com-
putation time for the feasible instance that is created by prohibiting all but the
final 80 games is more than 9000 seconds. The all-different constraint program
never does that poorly but can still take more than 300 seconds for various in-
stances. Clearly many of these instances are difficult for our codes even for these
relatively small sized instances.

5.2 Divisional Schedules

There is a natural set of restrictions that are extremely difficult for the constraint-
based formulations but are solved much more quickly by the integer programs.
Many leagues are divided into two or more divisions. In such cases, some leagues
like to begin by playing games between divisions and finish the schedule with
games between divisional opponents. For two equally sized divisions, this ap-
proach works fine if n is divisible by 4, but does not work well for cases where
n = 2 mod 4. In that case, divisions have an odd number of teams, so no compact
round robin schedule is possible with only divisional play at the end.

We can create difficult instances by fixing a large number of games. Suppose
there are n teams, with n = 2 mod 4, numbered 0 up to n — 1. Divide the teams
into two groups X = [0..n/2 — 1] and ¥ = [n/2..n — 1]. For the first n/2 — 1
slots, play X and Y as a bipartite tournament, leaving one game between X
and Y unplayed for each team. Then, in slot n/2 fix two of the remaining games
between X and Y. For six teams, the schedule might be:

Team
Slot 0 1 2 3 4 5

GO WN -

With these fixtures, the schedule is infeasible. In the above example, teams
2 and 4 need to play in slot 3, and then 0, 1, and 2 need to play a round robin
among themselves in the remaining two slots, which is impossible.

The size 6 example is easy for any approach; things get more interesting
for larger problems, as shown in Table 2. In this table, the dashes mean that
no proof of infeasibility was found in half an hour of computation time (1800
seconds).

For the Strong-IP, the only needed constraints are for the odd sets associated
with each division in each time period. That is sufficient for the linear relaxation
to be infeasible for every n, which gives the near-constant computation times.
For the one-factor method of HMT, there is no immediate proof of infeasibility
for n > 10 by domain reduction, so at least some branching is needed (and we
believe the amount of work will be significant).

5.3 Maximum Value Schedules

As a final test for SRR, we randomly generated values for each game in each
slot and tried to find the maximum value schedule. For an instance of size n,
we independently generated a value uniformly among the integers 1...n2 for

Size|all-different|Basic-IP|Strong-IP
F T| N T\N T
10|116 0.20{393 0.19| 0 .20
14| — —| — —0 .34
18| — — — —0 .32
22| — — — —|0 .38

Table 2. Divisional Schedules (30 minute time limit)

each game (i,5,t). There were no other restrictions on the schedule. We also
generated bipartite versions of these problems (denoted b in the tables below).

For these sorts of optimizations, the search strategy is critical for constraint
programming. The strategy used was to set the variables slot by slot, beginning
with the first slot. The opponents for each team are ordered in decreasing order
by value, and high value opponents are tried first.

The results are shown in Table 3. Not surprisingly, the integer programming
based approach does much better at this test. In order for constraint program-
ming to be competitive in this test, some sort of cost-based domain reduction
would have to be done. Note that even the bipartite problems are difficult for
constraint programming despite the arc-consistent propagation we do through
the all-different constraint. HMT’s one-factor constraint is no stronger in the
bipartite case.

Size| all-different Basic-IP
F T N T
8| 84962 5.33 0 .03

10 — —| 66 .29
12 — — 402 3.59
14 — —7263 133.03

8b 1458 0.04 0 0.02
10b 3832 0.36 0 0.04
12b|4800172 216.75 0 0.09
14b — —| 0 0.10

Table 3. Maximum Value Schedules (30 minute timelimit)

6 Home/Away Pattern Restrictions

The final set of constraints we would like to consider is extremely important
in practice. For some leagues, every team has a home venue and every game is
played at the home venue of one of the two teams competing. In this situation,

10

there are often constraints on the home and away patterns of these teams. These
constraints might include

— Restrictions that a particular team be home (or away) in a particular slot.

— Limitations on the number of consecutive home (or away) games a team may
play.

— Requirements on the number of home games that must appear in some subset
of the slots. For instance, a team might want to be at home at least half of
the weekend games, or half of the games during the summer.

— Restrictions on pairs of slots. For instance, a if a team begins with an away
game, the final game of the tournament might be required to be a home
game.

There has been much work on scheduling with home/away patterns. Much
of this work has concentrated on multiple phase approaches, where first the
home/away pattern is fixed, and then the games are chosen consistent with
this pattern (see, for example, [6,7,23,20,15,11]. Alternatively, some work has
reversed the process where first the games are chosen and then the home/away
pattern chosen ([19,24]). While these approaches are often very successful, there
are cases where they do not work very well. For instance, depending on the
restrictions on home/away patterns, there can be a huge number of feasible
patterns, and a correspondingly large number of basic match schedules (see
[23]). Enumerating and searching through all of them can be a computationally
prohibitive task.

Is it possible to have one model that contains both game assignment and
home/away pattern decisions? Conceptually, the models are straightforward to
formulate. We consider a double round robin (DRR) tournament where every
team plays every other team twice, once at home and once away.

For the integer program, we reinterpret the z;;; variables to mean that ¢
plays at j during slot t. We also create auxilliary variables h;; which is 1 if 4 is
home in slot ¢ and 0 otherwise. Clearly h; = > j Tjit-

For the constraint program, there are a number of possible formulations. For
this test, in order to maximize the effect of the all-different constraint, we
used the variables plays[i, j] to be the slot number in which ¢ plays at j. This
gives the basic formulation of

forall (i in Teams)
all-different(all (j in Teams) playsl[i,j],
all (j in Teams) plays[j,il);

(For notational convenience, we actually created a n by 2n array of variables
with plays[i,j] for j <=n giving the slot where ¢ is at home to j and for j>n
giving the slot where ¢ is away to j — n, but will continue the exposition with
the original variables).

Our home/away variables are given by

11

forall (i, j in Teams)
home[i,plays[j,i]l] = 1;
home[i,plays[i,jl] = 0;

For both the integer and constraint programming approaches, some schedule
requirements are easy to formulate with these variables. Fixing teams to be at
home (or away) at a particular time is simply a matter of fixing the h (or home)
variable to take on the appropriate value. Fixing the number of home games in
a subset of slots is simply a linear constraint on the sum of the home variables.
Putting an upper bound on the number of consecutive home games can be done
as follows: if no more than k consecutive home games are permitted, then for
every ¢ and t, add a constraint

sum(tl in Slots: t>=t & t<=t+k) homel[i,t1] <=k
A similar restriction on consecutive away games can be done by using 1-home[i,t1].

OPL has a stronger way of handling these constraints: the sequence con-
straint allows for the explicit bounding of the number of times a value can
appear in a subsequence of an array. We add to the constraint program the re-
dundant constraints that half the teams must be at home in every slot (without
them, the constraint program works very poorly).

Our first test is to simply determine whether our programs can find schedules
in the absence of additional constraints. It was shown in HMT that constraint
programs can find unrestricted schedules quickly for more than 20 teams (and
more than 40 teams with their one-factor improvements). How does adding home
and away requirements affect that?

In the following table, we give the time to find one schedule with n teams
and an upper bound of k£ consecutive home or away games. For k = 1, there is no
feasible schedule, so the time given is the time to prove infeasibility. With just
one exception, the constraint programming approach did much better, though
the integer program was able to generate solutions in a reasonable amount of
time.

The entry for the constraint program for n = 12, k = 3 is not a misprint:
despite the ease at which the constraint program solved the other instances,
the search went poorly in this case, and no solution was found within one-half
hour. This suggests that either an improved search procedure is needed (we
simply instantiated the play variable before the home variable team-by-team) or
a stronger propagation algorithm is needed to ensure consistency in computation
time. Still, it is clear that constraint programming is by far superior for this type
of instance.

To move closer to to the types of schedules needed in practice, we add a
constraint that there cannot be any length-one home stands or road trips. This
is done by adding constraints of the form

home[i,t] <= home[i,t-1]+home[i,t+1];
(1-home[i,t]) <= (1-home[i,t-1])+(1-home[i,t+1]);

with the obvious changes for the beginning and end of the schedule. This makes
the k = 2 instances infeasible.

12

Integer Program

Constraint Program

o 00 00 00 I
B W N =R

101
10 2
103
10 4
121
12 2
12 3
12 4
141
14 2
14 3
14 4
161
16 2
16 3
16 4
181
18 2
183
18 4

Table 4. Length Constrained H/A Schedules (30 minute limit)

N

[y
O NNk RO RO ORI

[y
—

20

35

124
2
28

T

1.04
1.41
1.04
0.56
8.82
5.92
2.87
3.72
24.84
17.29
15.11
32.42
59.71
70.10
82.34
169.42
163.52
604.86
1557.02
669.14
892.64

F
40
6
21
4
40
199
462
1141
220
2

0
312
11
3

2
420
184
197
1
544
227
9

1

T
0.05
0.05
0.04
0.02
0.01
0.24
0.44
0.98
0.54
0.84
0.12
1.21
0.20
0.18
0.19
2.48
0.74

.32
.03
4.82
1.16
.04
.05

13

The results are shown in Figure 5. Clearly this approach to limiting the
home/away pattern is not consistent with the rest of the constraint programming
model: constraint programming is unable to find any feasible solutions with
half an hour. The integer programs are slow, but do find solutions. Given the
success the multiple-phase approaches have with instances like this, it is clear
that a smarter search rule (mimicking the multiple phase approach) or a better
propagation rule should have significant effect on the constraint program.

Integer Program|Constraint Program
nkl N T F T
8 2|1427 21.42| 2166 0.99
8 3| 513 60.12 — —
8 4| 750 83.86 — —
10 2| 115 111.09|42768 26.18
10 3(1354 921.6 — —
10 4|2214 1290.38 — —

Table 5. Length Constrained H/A Schedules, No Singles (30 minute limit)

Finally, we added values for matchups on particular days, generating ran-
dom values in the range 1...n2 for each pairing in each slot. Unfortunately,
neither code at this stage can solve even the n = 8, k = 3 instance with a no-
singleton constraint within 30 minutes. The results in the table are without the
no-singleton constraint.

|Integer Program|C0nstraint Program

nkl N T F T
8 3| 1516 22.73|— —
8 4 77 0.92|— —
103 — —|— —

10 4]15268 594.70|— —
Table 6. Length Constrained H/A Schedules, Maximum Value (30 minute limit)

One final set of requirements we have not yet included has to do with travel
requirements on teams. For leagues like MLB where travel a concern, it is im-
portant to minimize the travel distances of each team. Unfortunately, the direct
formulation of this does not lead to solvable models. More complicated models
involving different variables seems to be needed [10].

We can, within the models given, preclude terrible travel by including con-
straints that require trips from, say, the east coast to the west coast to include
at least two west coast teams before returning. Such constraints are similar to
(for both formulation and computation) the constraints that preclude length-one
homestands and roadtrips.

14

7 Conclusions

We have shown that round-robin schedules with constraints of practical interest
can be modeled by both constraint and integer programming techniques. The
constraint programs were often faster except when there was an objective func-
tion, or in certain infeasible cases where the propagation was not strong enough
to recognize infeasibiilty.

Returning to the Major League Baseball example, once the problem has been
divided into smaller pieces, it is clear that IP/CP approaches are reasonable
methods to solve the sections. Computation times are low enough to allow for
multiple iterations of each section. In these iterations, constraints and objectives
can be modified to push the process towards a good overall schedule.

In the course of this study, a number of gaps in current knowledge have been
identified, and these make interesting future research directions.

— Is it worth adding constraints via the Strong-IP formulation? Henz, Miiller,
and Thiel [12] show that stronger propagation is generally a good idea for
constraint programs. Is it also true that stronger relaxations are good for
these integer programs?

— How can costs be better handled for the constraint programs? Handling costs
is an active issue in the constraint programming community, and round-robin
scheduling makes a good test-bed for these approaches.

— Clearly it would be good to include the strong propagation of HMT to the
home/away models. Is there stronger propagation available combining the
opponents with the home/away structures? Are there additional constraints
that can be added to the integer programs? Is there a better way of handling
home/away models which does not require a multi-phase approach?

— Can the integer programming and constraint programming approaches be
usefully combined for these problems?

Round-robin scheduling makes an interesting test-bed for exploring algorith-
mic issues in combinatorial optimization. Success in this scheduling also provides
the building blocks for scheduling of real-world sports leagues.

References

1. Anderson, I. 1997. Combinatorial Designs and Tournaments, Oxford University
Press.

2. Ball, B.C. and D.B. Webster. 1977. “Optimal scheduling for even-numbered team
athletic conferences”, AIIE Transactions 9, 161-169.

3. Cain, W.O., Jr. 1977. “A computer assisted heuristic approach used to schedule the
major league baseball clubs”, in Optimal Strategies in Sports, S.P. Ladany and R.E.
Machol (eds.), North Holland, Amsterdam, 32-41.

4. Campbell, R.T. and D.-S. Chen. 1976. “A minimum distance basketball scheduling
Problem”, in Management Science in Sports, R.E. Machol, S.P. Ladany, and D.G.
Morrison (eds.), North-Holland, Amsterdam, 15-25.

15

5. Colbourn, C.J. 1983. “Embedding partial Steiner triple Systems is NP-complete”,
Journal of Combinatorial Theory, Series A, 35, 100-105.

6. de Werra, D. 1980. “Geography, games, and graphs”, Discrete Applied Mathematics
2, 327-337.

7. de Werra, D. 1988. “Some models of graphs for scheduling sports competitions”,
Discrete Applied Mathematics 21, 47-65.

8. Easton, K.K. 2002. Using Integer Programming and Constraint Programming to
Solve Sports Scheduling Problems, doctoral dissertation, Georgia Institute of Tech-
nology.

9. Edmonds, J. 1965. “Maximum matching and a polyhedron with (0,1) vertices”,
Journal of Research of the National Bureau of Standards Section B, 69B, 125-130.

10. Easton, K.K., G.L. Nemhauser, M.A. Trick. 2002. Solving the Traveling Tourna-
ment Problem: A Combinted Integer Programming and Constraint Programming
Approach, PATAT IV, Gent, Belguim.

11. Henz, M. 2001. “Scheduling a Major College Basketball Conference: Revisted”,
Operations Research, 49, 163-168.

12. Henz, M., T. Miiller, and S. Thiel. 2003. “Global Constraints for Round Robin
Tournament Scheduling”, to appear, European Journal of Operational Research.

13. ILOG. 2000. “ILOG OPL Studio”, User’s Manual and Program Guide.

14. Marriott, K. and P.J. Stuckey. 1998 Programming with Constraints: An Introduc-
tion, MIT Press.

15. Nemhauser, G.L. and M.A. Trick. 1998. “Scheduling a Major College Basketball
Conference”, Operations Research, 46, 1-8.

16. Padberg, M.W. and M.R. Rao. 1982. “Odd minimum cut-sets and b-matchings”,
Mathematics of Operations Research, 7, 67-80.

17. Régin, J.-C., 1994. “A filtering algorithm for constraints of difference in CSPs”,
Proceedings of the AAA 12th National Conference on Artificial Intelligence, 362—
367.

18. Régin, J.-C., 1999. “The symmetric alldiff constraint”, in T. Dean (ed) Proceedins
of the International Joint Conference on Artificial Intelligence, 1, 420-425.

19. Régin, J.-C. 1999. “Minimization of the Number of Breaks in Sports Scheduling
Problems using Constraint Programming”, DIMACS Workshop on Constraint Pro-
gramming and Large Scale Discrete Optimization.

20. Russell, R.A. and J.M Leung. 1994. “Devising a cost effective schedule for a baseball
league”, Operations Research 42, 614-625.

21. Schaerf, A. 1999. “Scheduling Sport Tournaments using Constraint Logic Program-
ming”, Constraints 4, 43-65.

22. Schreuder, J.A.M. 1980. “Constructing timetables for sport competitions”, Math-
ematical Programming Study, 13, 58-67.

23. Schreuder, J.A.M. 1992. “Combinatorial aspects of construction of competition
Dutch Professional Football Leagues”, Discrete Applied Mathematics 35, 301-312.

24. Trick, M.A. 2001. “A schedule-then-break approach to sports timetabling”, in E.
Burke and W. Erben (eds) Practice and Theory of Automated Timetabling 11T, LNCS
2079, Springer.

25. Van Hentenryck, P. 1999. The OPL Optimization Programming Language, MIT
Press.

