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Abstract

We review the properties of algorithms that characterize the solution
the Bellman equation of a stochastic dynamic program, as the solution
to a linear program. The variables in this problem are the ordinates of
the value function, hence, the number of variables grows with the state
space. For situations when this size becomes computationally burden-
some, we suggest the use of low-dimensional cubic-spline approximations
to the value function. We show that fitting this approximation through
linear programming provides upper and lower bounds on the solution to
the original “large” problem. The information contained in these bounds
leads to inexpensive improvements in the accuracy of approximate solu-
tions.

1 Introduction

For a large (and for economists, an interesting) class of nonlinear stochastic
dynamic programming problems, the Bellman equation can be characterized by
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a set of linear restrictions on the value function. Trick and Zin (1993) propose
linear programming algorithms that exploit this feature to find the fixed point
of Bellman’s equation, i.e., the optimal value function. For a finite and discrete
problem, or for a finite discretization of a continuous problem, they show how
so-called constraint-generation algorithms can (1) provide order-of-magnitude
speed gains over more traditional value-function iteration algorithms, and (2)
provide increased accuracy (without increased complexity) through the adaptive
grid genmeration that the linear programming approach affords. The problem
remains, however, that for large problems, benefits of constraint generation are
still dwarfed by the “curse of dimensionality.” This paper investigates new
algorithms that allow the linear programming approach to be applied to much
larger problems. Moreover, these algorithms also allow for a form of adaptation
that provides increases in accuracy at a very small cost.

We reduce the size of the problem by assuming that an approximation to
the value function lies in a space of flexible functional forms, namely, cubic
splines. Cubic splines have a number of attractive qualities. For example, they
can greatly reduce the dimensionality of the problem: a good approximation
can be obtained from a spline with a much smaller number of parameters than
the number of unrestricted value-function ordinates needed to obtain a compa-
rable approximation. However, the main feature for our purposes is that, even
though these functions are highly nonlinear in the state variables, they are linear
functions of their parameters. Written in terms of splines, the approzimation
to the discrete Bellman equation is linear in the parameters. Therefore, these
parameters, and hence the approximate value functions, can be found using
constraint-generation linear programming techniques. The benefits of solving
this problem with constraint generation rather than, say, least squares are (1)
computational speed, (2) ease of imposing additional restrictions such as mono-
tonicity of the value function or its derivatives, and most importantly, (3) the
linear programming spline approximation cannot lie below the exact solution to
the discrete value function.

This last feature motivates the accuracy enhancing adaptations we propose.
Increased accuracy obtains as follows. Take an arbitrary (and perhaps coarse)
partition of the finely discretized state space. Use the constraint generation
algorithm to obtain a spline approximation of the value function. This ap-
proximate value function must lie on or above the discrete value function (i.e.,
the exact value function calculated directly on the discrete grid). Calculate
the optimal actions implied by this approximation. Calculate the unrestricted
value-function ordinates implied by these approximate actions. Note that since
these actions are feasible but not necessarily optimal (given the approximate
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nature of the value function they were constructed from), these values must lie
on or below the discrete value function. We now have an upper and a lower
bound on this function. Check where these bounds “differ the most” and adapt
the spline accordingly, e.g., make the partition finer at that location, move the
partition, or increase the order of the polynomial over that partition. Use con-
straint generation to find a new approximation over this new partition of the
state space, and iterate. Stop when the approximation achieves the desired de-
gree of accuracy. The complexity of the problem does not change dramatically
as this adaptation proceeds so that accuracy can be improved at a very low
cost.

Many of the benefits we note for spline approximations apply more generally
to other functional approximations. The essential property is the linearity in
the unknown parameters (but not the state variables). For example, Mrkaic,
Trick and Zin (1997) employ neural-network approximations in a very similar
fashion. Schweitzer and Seidmann (1985) also use linear programming (among
other techniques) to compute generalized polynomial approximations to the
value function.

We develop our algorithms in the context of the neoclassical stochastic
growth model detailed in the next section. We compare the speed of linear
programming algorithms to conventional value-function iterations in Section 3.
In Section 4 we introduce our spline approximations. The value-function bounds
generated by these approximations are derived in Section 5 and are then used
to enhance the accuracy of the solution in Section 6.

2 The Linear Programming Approach

We begin by outlining the basic linear programming approach to solving stochas-
tic dynamic programming problems in the context of the stochastic growth
model. For time periods t = 1,2, ..., the production technology is given by

Yt = th(kt) )

where y; is output produced in period ¢, k; is the stock of capital available at
the beginning of period ¢, f is a well-behaved production function and {z;} is
a stationary stochastic process representing the technology shock. The social
planner ranks random consumption sequences, {¢;} according to the expected



utility index
Uy = FEy Z Blu(es)
t=0

where 0 < § < 1 is the discount factor, u is a well-behaved within-period utility
function, and Ky denotes the period-0 conditional expectations operator. The
planner chooses a sequence of state-contingent consumption and capital pairs
{er, kiy1 1524, to maximize utility subject to the constraint

c + kt—}—l - (1 - 5)kt - th(kt) )

where 0 < 6 < 1 is the rate of depreciation of capital. Implicit in this constraint
is a timing assumption that allows the planner to observe the realization of z
before making the period-¢ consumption/investment decision.

The dynamic programming approach to solving this problem uses the Bell-
man equation

v(k, z) = k’erflﬁl?li(z) {u(zf(k)+ (1 =8k —K)+ BE[(K, ') |k, 2]} , (1)

where v(k, z) is the value of the optimal plan given a capital stock & and
technology shock z, and A(k, z) is the set of feasible actions satisfying 0 < &' <
zf(k) + (1 — 8)k. Given v, optimal policies obtain from the maximization on
the right-hand side of (1). Closed-form solutions for optimal policies and values

are generally unavailable. This motivates the interest in solutions to numerical
examples of these economies.

We restrict our attention to a finite discrete-state version of this economy.
That is, capital and the technology shock are assumed to line in finite sets
defined respectively as

K={k", kD, k)

and

Z = {z(l), AL z(”z)}

The stochastic process for the technology shock is a first-order Markov chain
with transition probabilities given by

w;; = Prob (zt = 2\ ‘ 24 = Z(i))



With this additional notation, we can write equation (1) as

vij = Thax {uija + 52 szvaz} ; (2)

a&Aiy =1
where ' '
”UZ']‘ = U(k(l), Z(])) 5
wija = u (2D F(ED) + (1= 68D — )
and

Ay ={al <a<m, and 29 f(ED) + (1= 8K — £ > 0} .
Let n;; denote the number of elements in the set A;;.

The maximization in (2) implies a set of inequalities that must be satisfied
by the value function:
Vi > Uije + B Tiva (3)
=1
forall4, j, and a € A;;. It is well-known (e.g., Bertsekas (1976) and Ross (1983))
that finding the smallest set of v;;’s that satisfy these constraints amounts to
solving a linear program of the form

minz Vii (4)
ij
subject to (3).

Linear programming techniques are well know for stochastic dynamic pro-
grams, but are generally dismissed as inefficient. For instance, Puterman (1994,
p. 230), relying on work of Koehler (1976) states that “modified policy itera-
tion is considerably more attractive computationally than the simplex-method-
based linear programming codes,” citing times worse by a factor of 10. He goes
on to state that despite the difficulties inherent in linear programming, it might
be considered due to “the facility of sensitivity analysis” and “the ability to
include additional constraints”. Our results show that these two possibilities,
together with much faster current linear programming codes, are sufficient to
reverse the speed comparison in many cases.

Constraint generation is a technique for solving linear programs with a large
number of constraints. Rather than have a computer code attempt to solve



a large linear program, the solution procedure begins with a small number of
constraints. The linear program over this subset of constraints is solved. If the
result is feasible to all of the other constraints, then the incumbent solution is
optimal. Otherwise, some of the constraints violated by the solution are added
to the linear program and the linear program is resolved. This process iterates
until all constraints are satisfied.

We adapt the constraint generation technique to the problem of solving
the discrete stochastic dynamic programs. We will begin with a small number
of constraints, which correspond to feasible actions, and add constraints only
when the current solution violates them. In the examples below we solve linear
programs in more than 8,000 variables (value-function ordinates) subject to
more than 18.3 million constraints (restrictions implied by Bellman’s equations).
Moreover, we are able to accomplish this is a little more than an hour and a
quarter of workstation time. In addition to solving large problems, constraint
generation provides speed gains over solving the full linear program for a number
of reasons: (1) By knowing that the optimal solution needs only one binding
constraint (action) for each state, we can add only the most violated constraint
for each state, rather than possibly a large number of unneeded constraints; (2)
We can precalculate common terms used in multiple constraints; and (3) We
can ignore entire states, and only add them when we have a good estimate of
where their optimal actions occur. As we shall see, these reasons are sufficient
for orders of magnitude speedup over the full linear program.

3 Speed Comparisons

In this section, we compare the speed of constraint-generation algorithms to
standard value-function iteration. We do not make direct comparisons with a
full range of competing algorithms. However, since value-function iteration is
frequently used as a benchmark in other studies, these comparisons are implicit.

The numerical example we use for speed comparisons is as follows. The
exogenous technology shock is a two-state Markov chain, with a high state of
2z = 1.377 and a low state of z; = 0.726. The transition matrix is

- 0.975 0.025
~ 1 0.025 0.975

This is the high variance model in Christiano (1990) and corresponds to the
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log of the shock having a mean of zero, a variance of 0.1, a high degree of
persistence, and a symmetric ergodic distribution. We choose simple power
functions for the production function, f(k) = &k, and the utility function,
u(c) = ¢’ /p. The share parameter, « is set at 0.33 and the depreciation rate,
0, is set at zero. The risk aversion parameter, p, is 0.5. The discount factor, j3,
is set to 0.98 for most cases, however, to evaluate the sensitivity of our results
to the value of 3, we also conduct experiments where 3 varies over the values

{0.75,0.85,0.9,0.95,0.98,0.99,0.999}.

The discrete grid over the capital stock is equally spaced with end points
chosen so that roughly 10% of the points lie below k*(z1) and roughly 10% of
the points lie above k*(z3) defined by

= [U —flail 5)%?)] - Frlz) = l(l —?f?é),ﬁ)] -

The quantities k*(z1) and k*(z3) are the deterministic steady—state values for

equilibrium capital when z; and z;, respectively, are permanent features of the
fixed technology. This somewhat arbitrary choice of endpoints for the capital
grid provides an automatic way of ensuring that the solution has a well dispersed
ergodic set when we vary the parameter 3. If we were more interested in the
exact solutions to this problem rather than the properties of computational
algorithms for solving this problem, then we would want to be more careful in
choosing these points and perhaps tailor these choices to each numerical version
of the model being solved.

Starting values for value iteration are chosen as follows. For each point in the
state space, we calculate the steady-state utility as if the smallest feasible capital
stock was the deterministic steady state. This value, u(k)/(1 — 3), forms the
initial value from which we iterate until convergence. Starting values for value
iteration are an extremely important determinant of the speed of the algorithm:
the better the starting values, the faster the algorithm. The method we adopt
for choosing starting values is a simple automatic method that does not require a
lot of ex ante information about the solution, hence, it allows for reasonably fair
comparisons with other methods. In particular, we take comparable steps when
starting up the constraint generation linear programming algorithm described
below. Later we will discuss the possibility for grid generation to provide more
accurate starting values and a commensurate increase in speed. The convergence
criterion is max(; ;) [vji ™' — v < 0.000001.

The following experiments were performed on an HP 720 workstation with



32MB memory running HP-UX 8.0. All of the computer codes were written
in “C” and compiled with the operating system’s “cc” compiler. The linear
programs were solved with “CPLEX”, a commercial code widely available for a
number of computer systems. One idiosyncracy of CPLEX is the relative ease
of adding variables to a linear program, rather than constraints. As a result,
in anticipation of our use of constraint-generation algorithms, we find it more
convenient to always solve the dual of 4, and implement our algorithms with an

equivalent variable-generation.

Our intention in these tests was to generate conclusions applicable to more
than just the simple growth model. To this end, we tried to exploit only those
features of the model that have wide applicability. Therefore, all of these codes
precalculated terms when possible, provided the space required was no more
than ngn,. This meant that codes could not precalculate all of the u;;, but they
could precalculate the (expensive) term that depends only on 7 and 5 ((1—6)k;+
k{z; in this case). Similarly, to update after each iteration of value iteration or to
generate constraints in constraint generation, the term 33, 7;;v,; needs to be
calculated only once for each (a, 7). Other aspects specific to the growth model,
such as the curvature of the utility function and the near-linearity of the value
function for certain parameter values are not explicitly exploited. In particular,
we enumerate all feasible actions when determining the optimal action.

Figure 1 plots the computational speed in seconds against the size of the grid
for the capital stock, for value iteration and linear programming solutions to
the base-case growth model. It is clear from this figure that linear programming
provides dramatic increases in speed. Moreover, computational time appears to
be growing much more slowly for linear programming than for value iteration.
For the smallest problem in this figure, ny = 33, linear programming is almost
80 times faster than value iteration (0.2 seconds compared to 15.86 seconds).
For the largest problem in this figure, n;, = 513, linear programming is approxi-
mately 13 times faster than value iteration (297.11 seconds compared to 3781.7
seconds). These results indicate that standard linear programming can pro-
vide at least an order-of-magnitude improvement over standard value-function
iteration for problems of this size. The primary drawback of standard linear
programming is the large amount of memory needed to solve large problems.
However, as discussed above, constraint generation algorithms alleviate much
of this memory burden. Having established the benefits of the linear program-
ming approach over value iteration, we now turn to refinements on the linear
programming algorithm, namely, constraint generation.

Figure 2 compares the relative performance of standard linear programming



Figure 1: Value Iteration and Linear Programming Comparisons
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to the constraint—generation algorithm for solving linear programs. As described
above, constraint generation begins by solving the linear program subject to a
subset of the constraints, then repeatedly adding in violated constraints and
resolving, until all constraints are satisfied. For the problem at hand, we im-
plement this algorithm by beginning with the linear program that includes only
the constraints defined by the smallest feasible action for each point in the state
space. At each iteration, for each state (7, j) we add the constraint correspond-
ing to the action, a, that has the largest value of u(z, j, a) + 3, B7jve-1(a,j'),
unless this constraint is already in the linear program. When each constraint is
satisfied to within 0.000001, we conclude that the algorithm has converged. For
the smallest problem in the figure, n;, = 33, constraint generation is actually
slower than straight linear programming (0.4 compared to 0.1), however, for the
largest problem in this figure, ny = 513, constraint generation is more than two
and a half times faster than straight linear programming (115.82 seconds com-
pared to 297.11). Speed is not the only motivation for constraint generation.
Of even greater benefit is the ability to solve very large problems (as in Figure

3).

Along with standard linear programming and constraint generation, Figure
2 contains results for an algorithm that we term grid generation. The basic idea
behind this algorithm is as follows. We begin by solving the problem using only
a subset of states. We use the solution to the subset to generate good starting
solutions to a larger set of states. We continue until we have solved for all the
states. In this case, we begin by solving the problem corresponding to n; = 16,
choosing these 16 points equally spaced over the entire large grid. When we have
found the solution to this small problem, we then add new points to the capital
grid halfway between each of the current points (note that these new points are
also on the large grid), doubling the grid size in the process. For each point
that we add, we include three new constraints: the constraint corresponding to
a guess for the optimal action for the new point (computed as the average of the
optimal actions of its neighbors) and the points on the n;y = 32 grid adjacent
to this guess. We also include new constraints corresponding to the actions
on this finer grid that are adjacent to the optimal actions from the ny = 16
problem, since these are the newly introduced actions that are most likely to be
close substitutes for the original actions. We then optimize this larger problem
completely over the set of capital points (using constraint generation) before
adding new points. New points are added in exactly the same way, doubling
the grid size each time, until the full problem is completely solved. Since, with
constraint generation, we are already solving a sequence of larger and larger
linear programs, increasing the grid size in this way is a natural extension. This
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Figure 3: Larger Problem
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approach is similar in spirit to Whitt (1978, 1979) who examined the theoretical
aspects of successively finer grids and showed it is possible to get upper and lower
bounds on the value of a finer grid based on the solution to a coarser grid.

As we see in Figure 2, grid generation provides a speed gain over simple
constraint generation comparable to that of constraint generation over standard
linear programming. For the largest sized problem in this figure, grid generation
is more than 4 times faster than constraint generation (27 seconds compared
to 115.82). Grid generation is, therefore, more than 10 times faster than stan-
dard linear programming. Since memory demands are not as great for these
two algorithms (relative to standard linear programming), we can solve larger
problems. Figure 3 continues the results in the left panel out to n, = 4097. We
can see that the speed gains from grid generation continue as the size of the
problem increases. It is worth noting the size of the linear programs that we are
solving. With a capital grid of 4,097 points, we solve for 8,194 variables subject
to 18,507,872 constraints. Grid generation solves this large linear program in
a little over an hour and a quarter.

We also experimented with a grid generation algorithm for standard value—
function iteration. We began by solving on an initial grid of 16 points using the
value—iteration algorithm described above. Given the solution to this problem,
we add points on the capital grid halfway between each of the current points,
doubling the size of the grid. We then take as the starting value for the next
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Figure 4: Sensitivity to Discounting
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round of value iteration, the average of the values at the two neighboring points
(given by the solution to the ny = 16 problem). This process is continued
until the full problem has been solved. Although this grid generation improves
the performance of the value—iteration algorithm, the gains are typically on the
order of 30% (with a maximum of 90% for the n; = 513 problem), it is not
enough to make value iteration competitive with either constraint generation or
grid generation.

One of the known drawbacks of value iteration is its sensitivity to the degree
of persistence and the degree of discounting in the problem being solved. Our
base case already has a high degree of persistence in the technology shock and
has no depreciation in the capital stock. To examine the relative performance
of our algorithms we solve the base—case model with n; = 1025 for a grid of
values for the discount factor: 3 € {0.75, 0.8, 0.9, 0.95, 0.98, 0.99, 0.995, 0.999}.
Figure 4 plots the computation time for grid generation and for value-function
iteration against these values of the discount factor. In fact, standard value
iteration takes a prohibitively long time to converge for large values of 5. We,
therefore, exploit a very specific feature of the problem at hand to speed up
the algorithm. This goes against our objective of providing results that are
likely to be true beyond this simple model, but it does make the comparisons
we have in mind feasible. Specifically, when searching for the optimal action
for each point in the state space, we begin at the current action and search by
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increasing the value of the action until the maximand decreases. This allows us
to terminate the search before conducting a full enumeration of the action space.
The monotonicity that this procedure exploits is a property that can be shown
to hold at the optimum. It typically also holds at earlier iterations provided
the initial conditions are increasing in the capital stock. We increase the speed
of this algorithm further by exploiting the grid—generation method of obtaining
accurate starting values, as described above. With this problem-specific speed
up, value iteration can be faster than grid generation for small values for f.
The important point to note, however, is that computational speed for grid
generating is almost unaffected by increasing the values of 3. In contrast, note
the extremely rapid increase in computational time for value iteration (2,205
seconds for value iteration compared to 88.69 seconds for grid generation at
B =0.999). Constraint generation, though slower than grid generation, is also
insensitive to the value of f.

4 Dimension Reduction through Spline Ap-
proximations

In this section we explore the possibility of reducing the size of the linear pro-
gram we solve through the use of cubic spline approximations. Throughout this
section we retain the same parameterizations as above with two exceptions. We
increase the curvature of the utility function by setting the parameter p equal
to —5.0. Since this greatly increases the precautionary savings motive on the
part of the representative consumer, we expand the state space K to include the

interval [5, 800].

Note that these numerical values imply strong persistence in the dynamics of
the capital stock since the exogenous shock is very persistent, the capital stock
doesn’t depreciate, and the agent has a very low rate of time preference (i.e., the
agent is very patient). Moreover, the large value of the risk aversion parameter
will impute a high degree of curvature to the value function. Combining these
features makes this model a challenge to solve.

Figure 5 plots the ergodic distribution function for the capital stock for a
solution on a fairly fine grid, ny, = 4097. That is, the economy described above
is solved (exactly) on this grid. Ergodic probabilities are computed by solving
the equation

lp = p,
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Figure 5:

Ergodic Distribution for Capital
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where II is the 8194 by 8194 matrix of transition probabilities for the opti-
mal capital actions, and p is the 8194 by 1 vector of ergodic probabilities. For
comparison sake a uniform distribution function on (0,500) and a normal dis-
tribution with mean 196.35 and standard deviation 92.15 are plotted on the
same graph. Note that the ergodic distribution for the capital stock is more like
a normal distribution than the uniform, though it is not symmetric (capital is
bounded below by zero). We will use ergodic probabilities to compare features
of various solutions.

Figure 6 demonstrates how a solution deteriorates when a a coarser grid,
ng = 1025 (roughly one quarter the size of that in Figure 5), is used as an
approximation. Moments of this approximation are given in Table 1. Constraint
generation has proven useful for solving dynamic programs when nyn, is large.
However, should these dimension get “too large” then the number of variables,
i.e., value function ordinates, in the linear program may make the solution
algorithm infeasible. We now show how approximating the value function with
a flexible functional form can greatly reduce the number of variables and still
permit solution by linear programming.
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Figure 6:

Approx. Ergodic Distribution for Capital: nk=1025
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The cubic spline approximate value function, #(k{*), 2()), is defined by
S 16D € K [387 + A PRD A D (R0)2 4 40D (kO]
=1

where {K;},1=1,2,...,n,, is a partition of K, 1() € K;) =1 if &) € K, and
0 0therv‘7ise7 and 7 = {’7817])7’y{l’])?’}/gl’])”yéh‘?); ] = 1727 ttt 7n27 l = 1727 tte 7np}7
are the constant parameters of the spline approximation.

Continuity of this function in k requires the restrictions

387 AR 1) AR 1) AR 1) )

= A DR L) + AT T+ 1)+ AR 4 1)

for all y and [ = 1,2,...,n, — 1, where INC(Z,Z—I— 1) is the point that “joins” K,
and K.
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Continuity of the first derivative of the function in k requires the restrictions

n 2 R4 1) 4 398k 14 1) (6)
— D) Lo D 1) 4 39D 1)

Similarly for the second derivative

15 439114 1) = B 43R 1) (7)
and the third derivative
17 I4+1,j
! =gt (8)

The approximate value function is nonlinear in the state variable k. Note,
however, that it is still linear in =, i.e., the cubic spline parameters. Therefore,
the solution to this approximate problem is the solution to the linear program

min 323 1(kD € Ko 5 (k) (9)
subject to the restrictions
SR € K)F (RD) > e + 83w Y 1D € K)FL™(RD), (10)
=1 m=1 =1

where the cubic polynomial is given by

Continuity of the function and its derivatives requires the additional restrictions

given in (5)—(8).

Note the reduction in the number of variables in (9) compared to (4). For
example, when n, = 20, n;, = 4097, n, = 2, solving for the value function
ordinates involves 8194 “variables” in the LP, whereas solving for the cubic
spline approximation involves only 160 “variables.”

Figure 7 plots the ergodic distribution for an approximate solution that uses
a cubic spline over K with 20 equal sized partitions. Continuity in &k is imposed
on the level and the first derivative of the value function. This distribution lies
to the left of the exact distribution (i.e., the distribution of the exact solution
for ny = 4097), which is further reflected in the moments in Table 1.
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Figure 7:

Approx. Ergodic Distribution for Capital: np=20
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Figure 8 highlights a hazard inherent in the use of spline approximations.
It is not difficult to generate convex approximate value functions in a situa-
tion where the true value function is globally concave. In this case, the spline
approximation with a partition of 10 admits a “hump” just to the left of the
first “join point”. The consequence of this is evident in Table 1: the ergodic
distribution is truncated at a very low value of the capital stock. Judd and
Solnick (1994) provide methods for “shape preservation” that enable one to
impose monotonicity and concavity on spline approximations. They show that
incorporating these constraints can significantly improve the accuracy of these
approximations without increasing the complexity of the spline (e.g., increasing
the number of partitions over the statespace). We would anticipate a compa-
rable increase in accuracy from incorporating Judd-Solnick-type restrictions in
our algorithms, however, since we found that the nonconcavities in our prob-
lem do not arise for splines with 20 or more partitions, we do not impose their
restrictions on the solutions we report below.

Finally, we compute a solution with 40 partitions (320 variables). This
solution is too close to the exact solution to demonstrate graphically. The
moments are given in Table 1 and are extremely close to those of the exact
solution.

17



Figure 8:

Example of Nonconvexity: np=10
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Table 1: Moment Comparisons

Algorithm p=E(K) [BG— w2 (B — [ [B(k— )]
ng = 4097 196.3489 92.1525 76.3402 120.8191
Spline n, = 40 195.6602 92.1934 76.1663 120.8491
Spline n, = 20 167.6257 83.5304 69.4390 108.9115
Spline n, = 10 5.5678 5.5736 12.0165 17.7886
ni, = 2049 178.9011 82.0057 66.5746 107.3697
n, = 1025 187.8145 82.4057 58.4772 104.7454
Adaptive Spline I~ 159.4942 78.2545 68.3564 103.6734
Adaptive Spline IT  174.2334 83.4206 68.9132 108.6981

5 Value Function Bounds

The use of linear programming as a method for solving for the cubic-spline ap-
proximation to the value function has an additional benefit. The approximation
must always lie above the exact discrete value function. This property is easily
seen through a simple two-dimensional example.

Assume that the growth model described above is deterministic (n, = 1).
Further assume that the capital stock can take on only two values (n; = 2).
This implies that there are two variables and (at most) 4 restrictions in the
linear program in (4) and (3). Assign the following numerical values to the
instantaneous utilities:

U1 — 3.0 U192 — 1.0
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Figure 9: Two-Dimensional Example

V1=V2

@1

V2 @y €2

(22)

6 18 Vi

Ug1 — 9.0 Ug9 = 3.5

and set # = 0.5. The resulting restriction on the value function are

v1 > U+ B = v =3+ .50 (1,1)
v1 > Uiz + PBvy = v > 14 .5vy (1,2)
vy > Uz + Bur = vy > 9+ .50 (2,1)
V2 2 U292 + ﬁ’l)g = U2 2 3.5 + .51)2 (2,2)

These restrictions are depicted in Figure 9.

The solution to this dynamic program is depicted by the point A in Figure
9. The optimal policy is to take action 2 in state 1 and action 1 in state 2.
The optimal value in state 1 is 7.33 and the optimal value in state 2 is 12.67.
If we were to reduce the dimensionality of this problem by imposing, say, the
linear restriction vy = wvq, the linear program with this restriction would have
a solution at point B in the figure. The value function ordinates are equal to
each other at a level of 18. This implies action 1 be taken in state 1 and action
1 in state 2. If we calculate the unrestricted value of these actions the result is
point C with the value in the first state equal to 6 and the value in the second
state equal to 12.
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This simple example demonstrates a general property of a cubic-spline ap-
proximate value function solved with linear programming. The approximation
must always lie above the exact discrete value function. Moreover, the actions
implied by this approximation generate unrestricted values that must lie below
the exact discrete value function (since these actions are feasible but subop-
timal). Through these simple upper and lower bounds on the exact discrete
value function, we get valuable information about the accuracy of the approxi-
mation. That is, if the bounds are close to each other, the approximate solution
is accurate.

The proof that the cubic-spline approximate value function is an upper
bound on the exact discrete value follows directly from the following Lemma.

Lemma: For any z and y in R™ define the vector z € R™ as z(x,y) = min(z, y)
where the min is taken componentwise. Let P be the polyhedron defined by
(3). If z € P and y € P then z(x,y) € P.

Proof: Consider two feasible solutions to (4), v' and v* with typical components
v,}j and vfj. Let z;; be a typical component of z(v',v?). We need to show that:

Nz
Zij > Uija + BY TjiZal
=1
for all (z, 7).
Consider an instance where z;; = vj;. Then we know that
Nz
2ij 2 Uija + B Y Tjivg -
=1
But since z,; < v}, by definition, it follows that
Nz
Zij > Uija + B Y TjiZal -
=1

The same would be true if we began with an instance where z;; = v?j. Therefore
z(v',v?) is a feasible solution to (4).
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Figure 10:

Value Function Bounds (High Shock): np=20
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Theorem: The cubic-spline approximate value function is an upper bound on
the exact discrete value function.

Proof: Let v* be the solution to (4) and let v° be the cubic-spline approximate
solution to (4). For v to be an upper bound on v* it must be that z(v*,v®) = v*.
If this is not the case, then z(v*,v”) is a feasible solution to (4) by the Lemma
and it has a smaller value for the objective function than v*, which contradicts
the definition of v*.

As discussed above, the lower bound to the exact discrete value function
is found by finding the unrestricted values implied by the spline-approximate
actions. Note that the theorem could be stated in more general terms since
nothing specific about the structure of splines per se was used in the proof.
That is, any approximation method that is amenable to fitting with linear pro-
gramming (specifically, those that are linear in unknown parameters) will bound
the exact discrete value function.

Figure 10 demonstrates these bounds (with partition size of 20) for a par-
ticularly difficult-to-approximate region of the parameter space.
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Figure 11:

Approx. Ergodic Distribution: Fixed Partition v. Adaptive Partition
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6 Adaptive Spline Generation

The bounds discussed above can be used to refine the accuracy of a given solu-
tion. When the bounds are far apart for a particular region of the state space,
the spline approximation can be adapted accordingly. That is, either a finer par-
tition or a richer polynomial can be given to that region of the state space. We
opt for the former of these two options and maintain a cubic spline throughout.
The model can be resolved with the new parameterization, the new accuracy
can be checked, and so on. The process stops when a desired level of accuracy
is achieved.

Figure 11 plots the ergodic distribution of an approximation that follows the
following adaptation rule. Start with 10 equal partitions, solve the cubic spline
approximation using constraint generation, and locate the partition that has
the greatest distance between upper and lower bounds on the value function.
Split this partition in half and iterate until the approximation has 20 partitions.
For comparison, the distributions of the “exact” solution and the fixed parti-
tion of size 20 are also plotted in Figure 11. Note that this particular form of
adaptation does not generate much additional accuracy on average. The adap-
tation gets closer to the exact solution at very small values of capital but is
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Figure 12:

Adaptive Spline Accuracy (max_np=20)
T T

_0.021 High State

-0.041

Low State

-0.06

-0.08-

. . . . . . .
0 100 200 300 400 500 600 700 800
Capital Stock (k)

further away for high values. The reason for this can be seen in Figure 12 where
percentage deviations of the bounds are plotted for the final adapted solution.
This particular rule overemphasizes the dramatic absolute distance at the low
end of the state space. There is little accuracy to be gained over this region,
therefore, this adaptation sacrifices accuracy over the rest of the distribution
where the relative distance between the bounds is actually much greater.

To address this issue, we adopt an alternative form of adaptation. Start
with 10 equal partitions, solve the cubic spline approximation using constraint
generation, and locate the partition that has the greatest relative distance be-
tween upper and lower bounds on the value function. Split this partition in
half and iterate until the approximation has 20 partitions. The results for this
rule are given in Figure 13. From this figure it is clear that this is a much more
reasonable adaptation rule which can also be seen from the moments in Table 1.
Figure 14 reveals that relative accuracy in this example is within one percent.

24



Figure 13:

Approx. Ergodic Distribution: Fixed Partition v. (Relative) Adaptive Partition
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Figure 14:

(Relative) Adaptive Spline Accuracy (max_np=20)
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7 Final Remarks

The preliminary performance of our linear-programming-based adaptive spline
generation demonstrates that this method has a number of advantages over com-
peting approaches. Future work will focus on developing this algorithm for other
economic models, in particular, those with higher-dimensional state spaces. For
example, Johnson et al. (1993) used conventional spline approximations for a
series of stochastic water supply reservoir problems with multidimensional state
spaces. They found that higher dimensional splines offered significant improve-
ments over standard discretization methods (although for dimensions higher
than three, their algorithms are still very time consuming). In addition, ex-
ploring alternative functional approximations other than splines, e.g. neural
networks as in Mrkaic, Trick, and Zin (1997), also holds promise for expanding
the scope of linear programming algorithms and the accuracy adaptations they
provide, to a broader class of economic models.
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