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Abstract.

Knapsack constraints are a key modeling structure in constraint programming.
These constraints are normally handled with simple bounding arguments. We pro-
pose a dynamic programming structure to represent these constraints. With this
structure, we show how to achieve hyper-arc consistency, to determine infeasibility
before all variables are set, to generate all solutions quickly, and to update the
structure after domain reduction. Preliminary testing on a difficult set of multiple
knapsack instances shows significant reduction in branching, though an effective
implementation is needed in order to reduce computation time.
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1. Introduction

A (two sided) knapsack constraint is a linear constraint of the form
L < ax < U where L and U are scalars, z = [z1, T2, ...,Z,] IS an n-
vector of variables, and a = [a1, ag, ..., ap] is an n-vector of coefficients.
Each variable z; is to take one value from a finite domain D; (assumed
to be a subset of the non-negative integers) while each coefficient a; is
a nonnegative integer.

Knapsack constraints form the backbone for many types of discrete
formulations. Many standard integer programming formulations are
nothing more than a series of knapsack constraints. Crowder, John-
son and Padberg (1983) used a thorough understanding of individual
knapsacks to solve general integer programs. That paper revolutionized
the constraint generation method for integer programming.

Despite their importance, knapsack constraints are generally han-
dled in a straightforward way in most constraint programming systems.
Domain reduction is generally limited to simple bounding arguments.
For instance, if d; € D;, and a;d; > U, then clearly d; can be removed
from D;. Similarly, if every variable but one is set to the highest value
in its domain, the remaining variable must be set high enough to make
the total at least L.
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This perhaps overly simple handling is done despite the fact that
it only takes a small number of small knapsacks to turn an otherwise
tractable formulation into a difficult instance. For instance, Cornujols
and Dawande (1998) give a class of problems called the “Market Split
Problem” where problems with as few as 5 knapsacks and 40 variables
are resistant to solution by almost any technique.

Given the centrality of the knapsack as a modeling construct and the
difficulty that even small knapsacks can cause, we propose a dynamic
programming representation for handling knapsacks. This approach has
the following characteristics:

1. It allows domain reduction in order to ensure hyper-arc consistency
for a single knapsack. In other words, it will take the Di and remove
any value for which there is no setting of the remaining variables
to satisfy the knapsack.

2. Tt quickly identifies infeasibility even when the domains of most of
the variables are not yet singletons.

3. The structure is easily updated after branching or variable instanti-
ation, so the representation can be used throughout the constraint
programming process.

4. The structure can be augmented to provide checks on the feasibility
of a set of knapsack constraints.

5. The resulting structure can effectively generate all feasible solutions
to the knapsack constraint.

This approach uses a carefully implemented standard dynamic pro-
gramming formulation of the knapsack constraint in order to achieve
the above objectives. It is important to note that traditional IP ap-
proaches, such as cutting planes or linear programming-based branch
and bound, are often limited in their ability to achieve hyper-arc con-
sistency or are expensive to update after domain reduction.

In Section 2, we give the basic dynamic programming structure, and
show how it can be used to achieve hyper-arc consistency for the knap-
sack problem. We also discuss how to effectively generate all solutions
to the constraint. Section 3 discusses updating the structure during
the branching process. Section 4 addresses the problem of handling
multiple knapsack constraints. In section 5, we give some computational
results that show the effectiveness of this approach in handling hard
multiple-knapsack problems. We conclude by outlining the advantages
and disadvantages of this approach and by showing where the approach
might be most useful.
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2. Dynamic Programming and Knapsacks

Dynamic programming was one of the first proposed methods for solv-
ing knapsack optimization problems. Bellman (1957) first used the
phrase “dynamic programming” in the context of solving knapsacks.
Much follow-on work for this method occurred in the 1960s (see Nemhauser
and Wolsey, 1988 for references). For the following exposition, we will
outline the dynamic programming formulation for the 0-1 knapsack
problem, where D; = {0,1} for all <. Handling more general domains

is a straightforward generalization of the notation.

Define a function f(i,b) equal to 1 if the variables 1...4 can exactly
fill a knapsack of size b, and 0 otherwise, where ¢ ranges from 0 to n and
b ranges from 0 to U. We define the dynamic programming recursion
as follows

£(0,0) =1
£(i,b) = max{f(i — 1,b), f(i — 1,b— a;)}

We can visualize this as a network with one node for every (i,b).
Edges go from (i — 1,b) to (4,b') between nodes with a 1 value for
f. An edge corresponds to variable ¢ taking on value 0 (an edge from
(1 —1,b) to (i,b)) or value 1 (an edge from (i — 1,b — a;) to (z,b)). For
the knapsack 10 < 2z + 3x2 + 43 + dxy < 12, the knapsack graph is
shown in figure 1.

Rows in the above graph correspond to b values (0 through 12) while
columns represent i values. A shaded node corresponds to a node with
f value of 1.

Working forward from the node (0,0), we can determine whether we
can reach one of (4,10), (4,11), or (4,12) in order to prove that there
exists a feasible solution to the knapsack.

For constraint programming, we would like more than just deter-
mining feasibility. We can do domain reduction by working backwards
from the “goal” nodes ((4,10), (4,11), and (4,12) in our example), de-
termining which nodes can lead to a feasible knapsack. In doing so,
we determine all feasible intermediate nodes. Any node that can not
reach a goal node can be deleted from our graph. We call the result the
reduced graph. This gives the graph in figure 2.

Note in this example, there is no longer any edge that corresponds to
having x4 take on value 0. We can therefore remove 0 from the feasible
domain of z4.

The reduced graph is formally created by defining a recursive func-
tion g(4,b) equal to 1 if the variables s + 1...n can fill some knapsack
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of size from L to U, given variables 1...¢ have already filled exactly b.
Again ¢ ranges from 0 to n and b ranges from 0 to U.

This process is formalized in the algorithm Knapsack-hyper-arc-
consistency:

From Knapsack-hyper-arc-consistency, we create the reduced
graph with nodes (i, b) for 7 from 0 to n and b from 0 to U. There is
an edge from (i — 1,b) to (4,') if and only if f(1 —1,b) =1, g(3,0') =1
and b’ — b € D;, Such an edge is given label d;.

The following lemmas are immediate from the definitions of f and
g- We call the nodes (n,b) for L < b < U, goal nodes.

LEMMA 1. Any path from (0,0) to a goal node in the reduced graph
G from Knapsack-arc- consistency corresponds to a feasible solution to
the knapsack constraint.

LEMMA 2. If variable ¢ has no edge with label d; in G, then d; can
be removed from D; without affecting the set of feasible solutions to the
knapsack constraint.

We say that the knapsack constraint is hyper-arc consistent with
domain D if for each z; and d; € D;, if z; is assigned value d; then
there is an assignment of all other variables so that both the domain
restrictions and the knapsack constraint is satisfied (see, for instance,
Marriott and Stuckey, 1998).

LEMMA 3. Once infeasible values have been removed from each do-
main, the resulting domains are hyper-arc consistent with the knapsack
constraint.

Example: For the knapsack is 80 < 27z, + 37Txo + 45x3 + 53x4 <
82 and the domains of each of the variables is {0,1,2,3}, the three
feasible solutions are 1 = 3; 1 = 1,24 = 1; 9 = 1,23 = 1 (with the
other variables at 0). The resulting domains are {0, 1,3}, {0,1}, {0, 1},
{0,1} respectively. Note that no simple bounds argument can reduce
the domain of z; to remove the value 2.

Formally, this algorithm is only psuedo-polynomial: it’s complexity
is O(nU?). The space required is of the same complexity. This suggests
that this algorithm should only be used in cases where U is not too
large.

In practice, the reduced graph is often much smaller than this worst
case value. An effective implementation of this graph would not create
nodes for all (,b) values. Instead, a linked list can be used that stores
only nodes for which both the f(i,b) and ¢(7,b) values are 1.
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Knapsack-hyper-arc-consistency (A,L,U,D)
/* A is a vector of knapsack coefficients a(1l)..a(n),
L is the lower bound,
U is the upper bound,
D is the set of feasible domains for each variable x(n) */

£(0,0) =1
for (i=1;i<=n;i++) {
for (b=0;b<=n;b++) {
if (f(i-1,b)==1) {
foreach (d in D(i)) {
if (b+a(i)d <= U) {
f(i,b+a(i)d) = 1;
}

}

if (f(n,b)=0 for all L<=b<=U) then return unsatisfiable;
g(n,b) = 1 for all L<=b<=U
for (i=n-1;i>=0;i--) {
for (b=0;b<=n;b++) {
if (g(i+1,b)==1) {
foreach (d in D(i+1)) {
if (b-a(i+1)d >= 0) {
g(i,b-a(i+1)d) = 1;
}

}
for (i=1;i<=n;i++) {
D(i)=D(i)i\{ d: there exists no b such that f(i-1,b)= 1 and

g(i,b+a(i)d) =1}
}

Figure 3. Knapsack-hyper-arc-consistency
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It should be noted that many more complicated dynamic program-
ming formulations have been proposed for the knapsack problem. These
methods typically are used when the goal is to optimize a linear func-
tion relative to a knapsack constraint. In these dynamic programming
formulations, clever reduction techniques are developed based on char-
acterizations of optimal solutions. In our case, we are concerned not
with optimality but with characterizations of feasibility. For this, the
more complicated formulations are not applicable.

In some applications, the set of feasible values for the knapsack
is not a simple range [L,U]. For instance, parity considerations may
require an even value, or the range may have infeasible values embedded
within it. It is straightforward to modify this approach to handle such
requirements simply by appropriately defining the “goal nodes” of the
recursion.

Finally, we can generate all solutions to the knapsack constraint
by finding all paths in G. Since G is acyclic, this can be done easily
via standard methods. For instance, simply exploring GG in a depth-first
method will generate all paths in time linear in the length of the output.
It is also straightforward to determine the number of feasible solutions
without generating them by a recursion similar to the recursion given
above.

3. Updating the Knapsack Graph

In the course of constraint programming algorithms, the domains of the
variables will generally be reduced, either due to constraint propagation
or due to branching on domain values for a variable. Rather than just
resolving the knapsack with each change in domain, we can update the
Knapsack Graph directly.

Given a reduced graph and a domain value d; for x;, we would like
to create the reduced graph where d; is no longer a feasible value for
z;. First note that the reduced graph is completely determined by the
f and g function values. Second, clearly no f(i’,b) value is affected for
i’ < i, nor are g(i'b) values affected for 7' > 1.

How can we recalculate f(i',b) for i’ > ¢ (the calculation for g(i’, b)
for 4/ < 4 is similar)? The simplest manner is to keep a list of nodes
whose f value might have changed. Initially, this set of “possibles”
contains all nodes (i + 1,b) where f(i,b — d;) = 1. Given a “possible”
node (i',b), to determine if f (i, b) still equals 1, it is necessary to check
if f('—1,d;—1) =1for any d; —1 € D} —1. If so, then f(i’,b) remains
1 and (i’,b) can be removed from the possible set. If not, then f(i’,b)
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gets set to 0, and (¢/ + 1,b + d}) is added to the possible set for all
d; € Di'.

This approach is no worse than recreating the reduced graph and
may be much better. In particular, in many situations, the set of pos-
sibles contains only a small fraction of the reduced graph, so only a
small portion needs to be updated.

4. Handling Multiple Constraints

Multiple knapsack constraints occur either directly in a formulation
or in a maximization problem where the objective function is linear.
The results given for a single knapsack constraint can be generalized to
multiple knapsacks in two different ways: combining multiple knapsacks
into one or using the reduced graph to deduce infeasible knapsacks.

4.1. COMBINING INTO ONE KNAPSACK

A standard approach to handling multiple knapsacks is to combine
them into a single knapsack. For example, given two knapsacks:

L <azx <U;
Ly<dz<U,

we can multiply the second knapsack by some value « and add the
two constraints:

L1+ als < (a+ ad )z < Uy + als

A third constraint would be multiplied by o?, a fourth by o and so
on.

As long as « is large enough, this modification does not create any
additional solutions. Unfortunately, “large enough” can be quite large:
if Gmezr and dimg, are the largest coefficient value and the largest do-
main value respectively, then setting o to na,,42dma, is sufficient. With
even a small number of constraints, the size of the knapsack and the
commensurate memory requirements can get overwhelming.

If we choose a large enough, this knapsack can be handled exactly
as given in the previous section. In this case, we have a strong test for
infeasibility, a hyper-arc consistent domain reduction algorithm, and a
method for updating when the domain of a variable changes.

If we choose a smaller «, the constraint is still valid but there may
be solutions that satisfy the constraint that do not satisfy the original
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problem. In this case, we get weaker forms of our results. If the ag-
gregate knapsack is infeasible, then the original set of knapsacks was
infeasible also, though the converse might not be true. Similarly, if we
do domain reduction based on the aggregate knapsack, the result is
still valid, but we no longer have hyper-arc consistency: we may have a
domain value for which there is no completing solution to the original
knapsacks. The update remains easy, and would be faster than that for
larger a due to the smaller reduced graph.

4.2. DEDUCING BOUNDS FOR ONE KNAPSACK BASED ON ANOTHER

Given the computational expense involved in creating the reduced graph
for a knapsack problem, it would be advantageous to use that structure
to generate better bounds on other values. The simple structure of the
reduced graph makes it easy to calculate bounds on possible values for
other knapsack constraints.

Suppose we are given two knapsack constraints

Li <ax<U;
Ly <dz<U

and we have created the reduced graph G for the first knapsack. We
can calculate the maximum value of a’z over all feasible solutions in G
as follows:

define u(i, b) be the maximum value of a'z for each node (4,b) in G
using just the variables 1...¢. We can calculate this as follows:

4(0,0) = 0
u(i,b) = max{u(i — 1,b — d;) : there is an edge from (i — 1,b — d;)
to (i,b) in G}.

We can similarly define [(i,b) as the minimum value of a'z by re-
placing the “max” with a “min” in the recursion.

In order for there to be a solution in G that satisfies Ly < a'z < Us,
there must be a goal node (n,b) in G such that the intersections of the
ranges [[(n,b),u(n,b)] and [L2,U2] is nonempty. If it is empty for all
goal nodes, then the pair of knapsacks is not simultaneously satisfiable.

These values can be used to further decrease the size of the reduced
graph. Let u/(,b) be the maximum value of o'z using just variables
i+ 1...n in G, and I'(i,b) be the minimum value of a'z using just
variables i + 1...n in G. These can be calculated in a similar manner
to how we calculated u and I. Then u*(i,b) = w(%,b) + v/(4,b) and
I*(i,b) = 1(3,b) + ' (4,b) give the maximum and minimum value for for
a'z for any node (%,b). If the range between [*(i,b) and u*(i,b) does
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not intersect [Lg, Us], then (7,b) and all its incident arcs can be deleted
from G, with the possibility for domain reduction.

Of course, these calculations can be done for multiple knapsacks,
and each knapsack can take the role of defining the reduced graph.

Handling more general constraints is simply a matter of appropri-
ately defining [ and u values. The simple structure of the reduced graph
makes it straightforward to find bounds relative to the feasible solutions
to a knapsack constraint.

5. Computational Results

To test the usefulness of this dynamic programming approach to knap-
sack constraints, we developed a system to solve the feasibility version
of the Market Split problem of Cornujols and Dawande (1998). Their
description of this problem comes from Williams: A large company has
two divisions D1 and D2. The company supplies retailers with several
products. The goal is to allocate each retailer to either division D1 or
division D2 so that D1 controls 40% of the company’s market for each
product and D2 the remaining 60%. This can be formulated asking
whether the system of equations

Zaijxj:bi foralli=1...m
J

zj €{0,1} forallj=1...n

where n is the number of retailers, m is the number of products, a;;
is the demand of retailer ¢ for product j, and the right hand side b; is
given by the desired market split.

In Cornuejols and Dawinde, they generated random instances where
a;j was generated as a uniform integer between 0 and 99, n= 10(m-
1), and b; was set to |1/237, a;;j]|. These instances are almost always
infeasible for under 6 constraints.

These instances were shown to be extremely difficult to solve by
standard integer programming methods. Only recently have sophisti-
cated approaches (Aardal et. al, 1999, seems to be the best approach)
been developed to solve the 6 constraint, 50 variable instances. Even the
4 constraint, 30 variable instances are extremely difficult for standard
methods. Working with five instances of this size problem, OPL Studio
3.1 (Ilog, 2000) gives the results in Table 1.

The dynamic programming formulation reduces the number of sub-
problems significantly only when domain reduction and/or multiple-
knapsack capacity bounds are included.
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Table I. Solving 4 constraint 30 variable instances

Method Branches
Solver (Constraint Based feasibility testing) 1,715,993
CPLEX (Integer Programming Branch and Bound) 1,010,421
Dynamic Program without domain reduction 2,236,433
Dynamic Program with domain reduction 531,661

Dynamic Program with domain reduction and
Multiple-knapsack capacity bounds 241,443

Key to making this a useful method is the efficient implementation
of the technique. A straightforward implementation of the dynamic
program with domain reduction gives a computation time of approxi-
mately 14,000 seconds, compared with 600 seconds for Solver and 204
seconds for CPLEX on average (times are on a 650 Mz PC running
Windows 2000). Note that the approach of Aardal et al. (1999) can
solve these problems in approximately one second.

Taking advantage of the sparcity of the reduced graph reduces the
dynamic programming time by a factor of 6, putting the average time
to 2157 seconds. While this time is still too long, further savings are
possible with a more careful implementation.

The method of combining knapsacks outlined in section 4.1 can solve
these problems very quickly by a “generate and test” approach: First
we generate all solutions to the combined knapsack then we test each
to determine feasibility to the individual knapsacks. Using a « value of
5 gave a knapsack formulation that had 19,560 solutions on average.
These could be generated and checked for feasibility to the individual
knapsacks in under 3 seconds. Since all solutions to the aggregate knap-
sack are generated, this approach is complete: it finds a solution to the
collection of knapsacks if and only if at least one exists.

In addition to the branching improvements, and possible time im-
provements via “generate and test”, there are other advantages to the
dynamic programming approach. In particular, the ease at which all
solutions to a knapsack can be generated cannot be mimicked by the
other approaches. The knapsack approach can also quickly updates af-
ter domain reduction, which suggests applications in the likely situation
where there are constraints other than the knapsack constraints. Like
many other global constraints, this strong approach to handling knap-
sack constraints may show its strength only in hard problems that mix
many types of constraints. And finally, the 0-1 knapsack problem may
not be the best problem set to show off the strength of this approach:
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CPLEX embeds much is what is known about 0-1 knapsacks, only some
of which generalizes to variables with more complicated domains.

The dynamic programming approach to knapsack constraints is cer-
tainly not always appropriate. If the right hand side of the knapsack is
very large, then the time and space requirements may be prohibitive.
The updates required, even with the dynamic updating suggestion,
are much more expensive than simpler “bounds” approaches. In mod-
els where the knapsacks are not the critical feature, it is clear that
the expense of the update is unlikely to be worthwhile. But in cases
where the problem is difficult, and where knapsacks are causing that
difficulty, the dynamic programming approach can greatly improve the
computational characteristics of the problem.
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