A Linear Progamming Approach to Solving
Stochastic Dynamic Programs™

Michael A. Trick! Stanley E. Zin?
August 1993

Abstract

Recent advances in algorithms for solving large linear programs,
specifically constraint generation, motivate new algorithms for solv-
ing discrete stochastic dynamic programs. We use a standard opti-
mal growth problem to demonstrate the performance benefits of these
new algorithms for solving discrete problems and for accurately ap-
proximating solutions to continuous problems through discretization.
Computational speed over value iteration is substantial. Furthermore,
computational speed does not depend on the parameter settings (in
particular the degree of discounting). An added benefit of a linear
programming solution is the byproduct of shadow prices which we use
to generate a discrete grid adaptively. That is, for a fixed number of
grid points, our algorithm determines how they should be distributed
over the state space to obtain greater accuracy without increasing
dimensionality.

*This work was inspired by conversations with Victor Rios. We thank Chris Telmer
and Tony Smith for helpful comments.

TGSIA, Carnegie Mellon University and DIMACS, Rutgers University. Supported in
part by Office of Naval Research Grant, Grant N00014-92-J-1387.

YGSIA, Carnegie Mellon University and NBER.

1 Introduction

Computational economics has enabled researchers to push out the frontiers
of the discipline far beyond what purely analytical methods will allow. No
area of economics seems to be untouched by this computational revolution. It
has had profound effects on applied microeconomics, labor economics, busi-
ness cycles, finance, game theory, social choice, and econometrics. Unfortu-
nately, researchers adopting the computational approach have quite naturally
reached another barrier: existing numerical algorithms cannot always deal
with the increasing complexities of economic models. Economic problems
that lack sufficient smoothness (such as models with fixed costs or borrowing
constraints) do not easily fit into smooth approximation methods (such as
linear-quadratic approximations). Dynamic problems with high dimensional
state spaces rule out most algorithms by virtue of simple memory require-
ments. Econometric estimators based on repeated simulations of solutions
to dynamic economies are typically limited by the slowness of most com-
putational algorithms. For these and countless other reasons the benefits
from improving our ability to solve interesting/difficult economic models are
immeasurable.

This paper bring recent advances in Operations Research to bear on some
of these computational issues in economics. Recent advances in algorithms
for solving very large linear programs, specifically constraint generation, mo-
tivate new algorithms for solving discrete stochastic dynamic programs. We
use a standard optimal growth problem to demonstrate the performance ben-
efits of these new algorithms for solving discrete problems and for accurately
approximating solutions to continuous problems through discretization. Our
results, reported below, suggest that computational speed over value itera-
tion is substantial. Furthermore, computational speed does not depend on
the parameter settings (in particular the degree of discounting).

Perhaps most important, though, is our use of shadow prices to auto-
matically generate a discrete grid. A major difficulty in discretization is the
choice of the grid. Too coarse a grid may lead to inaccurate solutions while
too fine a grid may be computationally intractable. Our approach can au-
tomatically generate a suitable grid without prior knowledge of properties
of the solution. Moreover, this is accomplished at no extra computational

cost. Our algorithms, therefore, obtain greater accuracy without increasing
dimensionality or computational cost.

The simplest algorithm for solving finite discrete numerical dynamic pro-
grams and for approximating continuous problems through discretization is
value-function iteration. It requires no specialized computer software and
is based on the same contraction—mapping principle that is typically used
to establish the existence of a solution. The problems associated with stan-
dard value—function iteration are well known and have often led researchers
to abandon this algorithm in favor of other methods (see Judd (1991), for a
thorough discussion of numerical dynamic programming and solution meth-
ods). Among these problems are the rapid increase in the size of the problem
as the state space expands, the sensitivity of the algorithm to properties of the
problem (in particular the degree of discounting), and when approximating
continuous problems, knowing how to discretize the state space and when a
particular discretization has provided a sufficiently accurate approximation.
However, there are also benefits from solving directly for the value func-
tion. For example, the value function is defined for all problems so it can be
obtained in problems where corner solutions or non-differentiabilities make
solving for optimal policies using alternative methods inapplicable. More-
over, the ability to obtain arbitrarily accurate discrete approximations to
continuous problems by using arbitrarily fine discretizations has lead to the
use of value-function-based solutions as a benchmark for accuracy checks

(see, for example, Judd (1991), chapter 13, and Christiano (1990)).

In this paper we adopt a linear programming approach for solving directly
for value functions in stochastic dynamic programming problems. The use
of linear programming, per se, is neither new nor, as we show below, is it
necessarily better than value iteration. What is new in this context is the use
of constraint—generation algorithms for solving these linear programs, which
can provide orders of magnitude computational savings, and the use of dual
values (i.e., shadow prices) for determining an efficient location of points
on the discretization of the state space. As we shall see, the combination
of constraint generation and adaptive grid generation provides an extremely
attractive algorithm for solving discretized stochastic dynamic programs.

The class of dynamic programming problems that economists would like
to solve numerically is extremely large. Rather than present the most gen-

eral case, we develop our computational methods in terms of the standard
optimizing growth model. Since this problem is the starting point for most
dynamic economic theories, other problems inherit much of the structure of
this problem and generalizations are fairly obvious. Moreover, this model
has become an informal benchmark for comparisons of competing algorithms
(e.g., Taylor and Uhlig (1990)). We begin by laying out the structure of a
standard optimal growth model (e.g., Stokey and Lucas (1989), chapter 2) in
Section 2. This model serves both as a benchmark for comparisons with other
solution methods and as a canonical stochastic dynamic program. In Section
3 we solve a variety of numerical examples of this growth model using three
different algorithms. We compare speed and robustness for value function
iteration, straight linear programming and constraint generation and we dis-
cuss grid generation as a way of speeding up both value iteration and linear
programming. Finally in Section 4 we present the adaptive grid generation
algorithm and discuss issues of accuracy. Section 5 present extensions and
other applications of this approach that we will pursue in the future.

2 The Stochastic Growth Model

We now lay out the basic structure of the stochastic growth model. For time
periods t = 1,2, ..., the production technology is given by

Yi = th(kt))

where y; is output produced in period ¢, k; is the stock of capital available at
the beginning of period ¢, f is a well-behaved production function and {z;}
is a stationary stochastic process representing the technology shock. The
social planner ranks random consumption sequences, {¢;} according to the
expected utility index

UO = EOZBtu(Ct) 5
t=0

where 0 < 3 < 1 is the discount factor, u is a well-behaved within-period
utility function, and Fy denotes the period-0 conditional expectations oper-
ator. The planner chooses a sequence of state-contingent consumption and

capital pairs {¢;, kiy1}52,, to maximize utility subject to the constraint
c + kt—l—l - (1 - 5)kt = th(kt))

where 0 < 6 < 1 is the rate of depreciation of capital. Implicit in this
constraint is a timing assumption that allows the planner to observe the
realization of z; before making the period-¢ consumption/investment decision.

The dynamic programming approach to solving this problem uses the
Bellman equation

v(k, z) = k’enfl\?lfz) {u(zf(k) + (1 = 6)k— k/) + BE ['U(klv Z/) |k, 2]}, (1)
where v(k, z) is the value of the optimal plan given a capital stock k and
technology shock z, and A(k, z) is the set of feasible actions satisfying 0 <
kK < zf(k)+(1—6)k. Given v, optimal policies obtain from the maximization
on the right-hand side of (1). Closed-form solutions for optimal policies and
values are generally unavailable. This motivates the interest in solutions to
numerical examples of these economies.

We restrict our attention to a finite discrete-state version of this economy.
That is, capital and the technology shock are assumed to line in finite sets
defined respectively as

K= {k(l)7 G k(nk)} 7

and

Z = {Z(l), AL Z(”Z)}

The stochastic process for the technology shock is a first-order Markov chain
with transition probabilities given by

7;; = Prob (Zt = 20) ‘ 2 = Z(i))

With this additional notation, we can write equation (1) as

'Uij = Inax {uija —|— ﬁ Z le'val} 5 (2)

a€A;; =

where

vij = v(k®, z0))
Uija = U (Z(j)f(k(i)) +(1—8)kW — k(a)) 7
and
A = {a ‘1 <a<mny, and 29 f(ED) 4+ (1 -8k — k@ > 0} :
Let n;; denote the number of elements in the set A;;.

The maximization in (2) implies a set of inequalities that must be satisfied
by the value function:

s.t. (27 > Uija + ﬁzﬂ'jlval 5 (3)

=1
for all 7, 7, and a € A;;. It is well-known (e.g., Ross (1983)) that finding the
smallest set of v;;’s that satisty these constraints amounts to solving a linear

program of the form
minZvij ,
1

subject to (3). We can put this problem into more standard linear program-
ming notation. Define

r = [’Ull,‘l}lg,...,‘Ulnz,‘l}gl,‘vgg,...,’Ugnz,
!
<oy Ung1y, Ung2y - -0y Unknz] 5
b = [unl, U111y -« 5 ULlngqg s U121, U122 - -+ 5 UL250
!
ceey unknzl7 unknz27 R unknznnknz] Y
and 1, = [1,1,...,1]" is an n = ngn, dimensional column vector of ones.

The value function ordinates are given by the solution to
min 1!z
st. Az >b , (4)

where A is an ();;ni;) x n matrix given by the constraints in (3). This
matrix has a great deal of structure which can be seen from a simple example.
Consider the case where ny = 3, n, = 2, n;; = n, = 3 for all 2 and 7, and the
shocks are independent, 7;; = 7;. The matrix A in this case has the form:

6

[1—pm —f7 0 0 0 0 1
1 0 —fBm — By 0 0
1 0 0 0 —pBm —pBrs
—0Bry 1 —fBr 0 0 0 0
0 1 —fBm —fBry 0 0
0 1 0 0 —fBm —pBry
— 67 —pB7y 1 0 0 0
0 0 1—8r —pBnr 0 0
A= 0 0 1 0 —fBm —pBm
—fBm — 7 0 1 0 0
0 0 —fBry 1 —fBry 0 0
0 0 0 1 —fBm — By
—fBm —fBmy 0 0 1 0
0 0 —fBm — By 1 0
0 0 0 0 1—pm —pfn
—fBm —fBmy 0 0 0 1
0 0 —fBm — By 0 1
L 0 0 0 0 —0Bry 1 — Bry |

The pattern in this matrix is fairly obvious and is easily extended to the
general case.

The size of this linear program will clearly present a problem. The value
function at each point (¢, j) in the state space must satisfy n;; restrictions.
The number of constraints for the nyn, variables could be as large as nin,.
In particular, when this discrete problem is approximating a continuous one,
accurate solutions would seem to require nj to be quite large, hence mak-
ing standard numerical methods impractical. For this reason, we explore
constraint generation algorithms in this context.

Constraint generation is a technique for solving linear programs with a
large number of constraints. Rather than have a computer code attempt to
solve such a large linear program, the solution procedure begins with a small
number of constraints. The linear program over this subset of constraints
is solved. If the result is feasible to all of the other constraints, then the

incumbent solution is optimal. Otherwise, some of the constraints violated
by the solution are added to the linear program and the linear program is
resolved. This process iterates until all constraints are satisfied.

Constraint generation has been spectacularly successful recently in solv-
ing tremendous linear programs. For instance, in the work of Grotschel and
Holland (1991), a formulation for the traveling salesman problem that is esti-
mated to have 2%° constraints is solved in a matter of hours on a workstation.
Work such as this requires the ability to solve some optimization problem in
order to identify violated constraints.

We adapt the constraint generation technique to solving the linear pro-
gramming formulation for discrete stochastic dynamic programs. We will
begin with a small number of constraints and add constraints only when
the current solution violates them. Unlike the work listed above, we need
to check each constraint in turn to see if it is violated. (In this paper we
solve linear programs in more than 8, 000 variables subject to more than 18.3
million constraints. Moreover, we are able to accomplish this is a little more
than an hour and a quarter of workstation time.) In addition to solving
large problems, constraint generation provides speed gains over solving the
full linear program for a number of reasons:

e By knowing that the optimal solution needs only one binding constraint
(action) for each state, we can add only the most violated constraint for
each state, rather than possibly a large number of unneeded constraints.

o We can precalculate common terms used in multiple constraints.

o We can ignore entire states, and only add them when we have a good
estimate of where their optimal actions occur.

As we shall see, these reasons are sufficient for orders of magnitude
speedup over the full linear program.

3 Solving for Value Functions

We specialize the growth model further by specitying explicit functional forms
for f and u, choosing numerical values for all of the models parameters, and
choosing a discretization of the state space. For these numerical models we
compare the performance of value iteration, linear programming and con-
straint generation algorithms.

3.1 Parameter settings

The exogenous technology shock is a two-state markov chain, with a high
state of z3 = 1.377 and a low state of z; = 0.726. The transition matrix is

- 0.975 0.025
~ 1 0.025 0.975

This is the high variance model in Christiano (1990) and corresponds to the
log of the shock having a mean of zero, a variance of 0.1, a high degree of
persistence, and a symmetric ergodic distribution.

We choose simple power functions for the production function, f(k) = k¢,
and the utility function, u(¢) = ¢”/p. The share parameter, a is set at
0.33 and the depreciation rate, 6, is set at zero. In the “base case” we set
the discount factor, 3, to 0.98 and the risk aversion parameter, p, to 0.5.
For this base case, we evaluate the performance of each algorithm as the
ny increases which increases both the number of choice variables and the
number of constraints in the linear program. To evaluate the robustness of
these results we also conduct experiments where ny, is fixed and 3 varies over
the values {0.75,0.85,0.9,0.95,0.98,0.99,0.999}. The discrete grid over the
capital stock is equally spaced with end points chosen so that roughly 10%
of the points lie below k*(z;) and roughly 10% of the points lie above k*(z2)
defined by

= [<1 i 5)ﬁ)] R [(1 e 5)&’)] -

The quantities k*(z1) and k*(z2) are the deterministic steady—state values
for equilibrium capital when z; and z,, respectively, are permanent features
of the fixed technology. This somewhat arbitrary choice of endpoints for the
capital grid provides an automatic way of ensuring that the solution has a
well dispersed ergodic set. If we were more interested in the exact solutions
to this problem rather than the properties of computational algorithms for
solving this problem, then we would want to be more careful in choosing
these points and perhaps tailor these choices to each numerical version of the
model being solved.

Starting values for value iteration are chosen as follows. For each point in
the state space, we calculate the steady-state utility as if the smallest feasible
capital stock was the deterministic steady state. This value, u(k)/(1 —),
forms the initial value from which we iterate until convergence. Starting val-
ues for value iteration are an extremely important determinant of the speed
of the algorithm: the better the starting values, the faster the algorithm. The
method we adopt for choosing starting values is, we believe, as simple auto-
matic method that does not require a lot of ex ante information about the
solution, hence, it allows for reasonably fair comparisons with other meth-
ods. In particular, we take comparable steps when starting up the constraint
generation linear programming algorithm described below. Later we will
discuss the possibility for grid generation to provide more accurate starting

values and a commensurate increase in speed. The convergence criterion is

max; j) |77 — o7 < 0.000001.

3.2 Solutions

The following experiments were performed on an HP 720 workstation with
32MB memory running HP-UX 8.0. All of the computer codes were written
in “C” and compiled with the operating system’s “cc” compiler. The linear
programs were solved with “CPLEX”, a commercial code widely available
for a number of computer systems.

Our intention in these tests was to generate conclusions applicable to
more than just the simple growth model. To this end, we tried to exploit
only those features of the model that have wide applicability. Therefore, all

10

Figure 1: Value Iteration and Linear Programming Comparisons

Computational Time in Seconds

3500 b

3000 Value lteration 4

2500 b

2000F b

15001 b

10001 4

500 b

L L L L L
100 200 300 400 500
Capital Grid Size

of these codes precalculated terms when possible, provided the space required
was no more than nin,. This meant that codes could not precalculate all of
the u;j, but they could precalculate the (expensive) term that depends only
on 7 and j ((1 — 6)k; + vk{z; in this case). Similarly, to update after each
iteration of value iteration or to generate constraints in constraint generation,
the term 33 75045 needs to be calculated only once for each (a, 7). Other
aspects specific to the growth model, such as the curvature of the utility
function and the near-linearity of the value function for certain parameter
values are not explicitly exploited.

Figure 1 plots the computational speed in seconds against the size of the
grid for the capital stock, for value iteration and linear programming solu-
tions to the base-case growth model. It is clear from this figure that linear
programming provides dramatic increases in speed. Moreover, computational
time appears to be growing much more slowly for linear programming than
for value iteration. For the smallest problem in this figure, n, = 33, linear
programming is almost 80 times faster than value iteration (0.2 seconds com-

11

Figure 2: LP, Constraint and Grid Generation Comparisons

Computational Time in Seconds

300f

2501

2001

1501
Constraint Generation

100

Grid Generation

L L L L L
100 200 300 400 500
Capital Grid Size

pared to 15.86 seconds). For the largest problem in this figure, n, = 513,
linear programming is approximately 13 times faster than value iteration
(297.11 seconds compared to 3781.7 seconds). These results indicate that
standard linear programming can provide at least an order-of-magnitude im-
provement over standard value—function iteration for problems of this size.
The drawback of standard linear programming is the large amount of memory
needed to solve large problems. However, as discussed in the introduction,
recent algorithmic advances help alleviate much of this memory burden. Hav-
ing established the benefits of the linear programming approach over value
iteration, we now turn to refinements on the linear programming algorithm,
namely, constraint generation.

Figure 2 compares the relative performance of standard linear program-
ming to the constraint—generation algorithm for solving linear programs. As
described above, constraint generation begins by solving the linear program
subject to a subset of the constraints, then repeatedly adding in violated
constraints and resolving, until all constraints are satisfied. For the problem

12

at hand, we implement this algorithm by beginning with the linear program
that includes only the constraints defined by the smallest feasible action for
each point in the state space. At each iteration, for each state (7, j) we add
the constraint corresponding to the action, a, that has the largest value of
u(i, j,a) + Y Brjjve_1(a,j), unless this constraint is already in the linear
program. When each constraint is satisfied to within 0.000001, we conclude
that the algorithm has converged. For the smallest problem in the figure,
n, = 33, constraint generation is actually slower than straight linear pro-
gramming (0.4 compared to 0.1), however, for the largest problem in this
figure, ny = 513, constraint generation is more than two and a half times
faster than straight linear programming (115.82 seconds compared to 297.11).
Speed is not the only motivation for constraint generation. Of even greater
benefit is the ability to solve very large problems (as in Figure 3).

Along with standard linear programming and constraint generation, Fig-
ure 2 contains results for an algorithm that we term grid generation. The
basic idea behind this algorithm is as follows. We begin by solving the prob-
lem using only a subset of states. We use the solution to the subset to
generate good starting solutions to a larger set of states. We continue un-
til we have solved for all the states. In this case, we begin by solving the
problem corresponding to n; = 16, choosing these 16 points equally spaced
over the entire large grid. When we have found the solution to this small
problem, we then add new points to the capital grid halfway between each
of the current points (note that these new points are also on the large grid),
doubling the grid size in the process. For each point that we add, we in-
clude three new constraints: the constraint corresponding to a guess for the
optimal action for the new point (computed as the average of the optimal
actions of its neighbors) and the points on the n, = 32 grid adjacent to this
guess. We also include new constraints corresponding to the actions on this
finer grid that are adjacent to the optimal actions from the n; = 16 prob-
lem, since these are the newly introduced actions that are most likely to be
close substitutes for the original actions. We then optimize this larger prob-
lem completely over the set of capital points (using constraint generation)
before adding new points. New points are added in exactly the same way,
doubling the grid size each time, until the full problem is completely solved.
Since, with constraint generation, we are already solving a sequence of larger
and larger linear programs, increasing the grid size in this way is a natural

13

Figure 3: Larger Problem

Computational Time in Seconds

14000

120001 Constraint Generation

10000+

8000

6000-

Grid Generation
4000

2000

L L L L L L L L
500 1000 1500 2000 2500 3000 3500 4000
Capital Grid Size

extension.

As we see in Figure 2, grid generation provides a speed gain over simple
constraint generation comparable to that of constraint generation over stan-
dard linear programming. For the largest sized problem in this figure, grid
generation is more than 4 times faster than constraint generation (27 seconds
compared to 115.82). Grid generation is, therefore, more than 10 times faster
than standard linear programming. Since memory demands are not as great
for these two algorithms (relative to standard linear programming), we can
solve larger problems. Figure 3 continues the results in the left panel out to
nr = 4097. We can see that the speed gains from grid generation continue
as the size of the problem increases. It is worth noting the size of the linear
programs that we are solving. With a capital grid of 4,097 points, we solve
for 8, 194 variables subject to 18,507,872 constraints. Grid generation solves
this large linear program in a little over an hour and a quarter.

We also experimented with a grid generation algorithm for standard
value—function iteration. We began by solving on an initial grid of 16 points

14

using the value—iteration algorithm described above. Given the solution to
this problem, we add points on the capital grid halfway between each of the
current points, doubling the size of the grid. We then take as the starting
value for the next round of value iteration, the average of the values at the
two neighboring points (given by the solution to the ny = 16 problem). This
process is continued until the full problem has been solved. Although this
grid generation improves the performance of the value—iteration algorithm,
the gains are typically on the order of 30% (with a maximum of 90% for the
ni = 513 problem), it is not enough to make value iteration competitive with
either column generation or grid generation.

One of the known drawbacks of value iteration is its sensitivity to the
degree of persistence and the degree of discounting in the problem being
solved. Our base case already has a high degree of persistence in the tech-
nology shock and has no depreciation in the capital stock. To examine the
relative performance of our algorithms we solve the base—case model with
ng = 1025 for a grid of values for the discount factor: g € {0.75, 0.8, 0.9,
0.95, 0.98, 0.99, 0.995, 0.999}. Figure 4 plots the computation time for grid
generation and for value—function iteration against these values of the dis-
count factor. In fact, standard value iteration takes a prohibitively long time
to converge for large values of 3. We, therefore, exploit a very specific feature
of the problem at hand to speed up the algorithm. This goes against our
objective of providing results that are likely to be true beyond this simple
model, but it does make the comparisons we have in mind feasible. Specifi-
cally, when searching for the optimal action for each point in the state space,
we begin at the current action and search by increasing the value of the ac-
tion until the maximand decreases. This allows us to terminate the search
before conducting a full enumeration of the action space. The monotonic-
ity that this procedure exploits is a property that can be shown to hold at
the optimum. It typically also holds at earlier iterations provided the initial
conditions are increasing in the capital stock. We increase the speed of this
algorithm further by exploiting the grid—generation method of obtaining ac-
curate starting values, as described above. With this problem-specific speed
up, value iteration can be faster than grid generation for small values for 3.
The important point to note, however, is that computational speed for grid
generating is almost unaffected by increasing the values of 5. In contrast,
note the extremely rapid increase in computational time for value iteration

15

Figure 4: Sensitivity to Discounting

Computational Time in Seconds
1800 T T

16001 i

Fast Value lter.

14001 il

12001 E

1000f B
800 B

600 b

400- b

Grid Generation

200

(2,205 seconds for value iteration compared to 88.69 seconds for grid gen-
eration at 4 = 0.999). Straight column generation, though slower than grid
generation, is also insensitive to the value of 4. With the increasing popu-
larity of simulation estimators in econometrics, the stability of an algorithm
as one searches over a parameter space is extremely important. Our linear
programming algorithms seem to satisfy this need.

4 Adaptive Grid Generation

The algorithms that we have discussed thus far all require the solution of
larger problems to obtain greater accuracy. With the linear programming
approach, however, the necessity of this size-accuracy tradeoff is less clear.
Whenever we solve the problem for a given grid, the linear programming so-
lution provides us with information about where to locate a new grid point to
obtain the greatest impact on the accuracy of the ultimate solution. We for-

16

Figure 5: p = —=5: (=) nx = 2049; (x) np = 129 fixed; (o) ny = 129 adaptive

Value Functions

-0.011

-0.021

-0.03f

-0.04f

-0.05f

-0.061

-0.071

-0.08f

-0.09r

L L L
30 40 50 60 70 80 90 100 110
Capital

malize this as follows. We begin by optimizing over a coarse evenly spaced
grid using column generation. Each state (¢,7) on this coarse grid has a
optimal action a(¢,j) and a shadow price w(z, j) generated by the linear pro-
gramming solution. This shadow price measures the impact on the sum of
the value function ordinates (the objective function in the linear program),
of a small change in the constraint, specifically u(z, 5, a(7,5)). We next cal-
culate the slack of each constraint adjacent to the constraint for a(z,). This
amounts to finding the change in u that would result in the constraint holding
with equality. We then multiply these slacks by the shadow price to obtain a
measure of the impact on the objective function of placing a new grid point
adjacent to a(z,7). We do this for all (7, j). We then add the actions and the
states corresponding to the highest values of this product of shadow price
and slack. The new points are always the midpoint between two existing
points. We call this method adaptive grid generation.

Figure 5 plots the optimal value functions (with a solid line) for our basic
model with p = —5. This solution is still approximate since it was obtained

17

Figure 6: p = —5: (x) ng = 129 fixed; (o) ng = 129 adaptive

X 10-3 Approximation Errors: Low Shock X 10-3

Approximation Errors: High Shock

. 129 fixed grid

af i 1 af
3 % : 3
129 fixed grid
*
ol | DI
:"5’—’6\ Dy . *.
® B, Q Q. L@t ®... .
w ® e, LK TreeL o,
1r 129 adaptive grid © e 1 etetmmnmnngn .
T T
T Gooooeinbenne, s,
¢ Pt [VRO
0 L L L L L L L L L 0 L L L L L L L
30 40 50 60 70 80 90 100 110 30 40 50 60 70 80 90
Capital Capital

with a grid size of ny = 2,049. This grid is, however, sufficiently fine that
we treat this as the true solution. Note that the amount of curvature in the
value function is greater conditional on low value of the technology shock.
We also plot the approximate solution for a fixed grid of 1/16th the size
(ny = 129), using an “x” to mark every eighth grid point. Note that this
solution lies everywhere below the true solution and that the approximation
error is greatest for small values of the capital stock when the technology
shock is in the low state. This is also where the value function has its greatest
curvature. Finally in Figure 5 we plot the solution using the adaptive grid
generation method described above. This solution is plotted using an “o”
to make every eighth grid point. Note that with the same number of grid
points, the adaptive grid method generally does a better job approximating
the true value function. This is especially true in the region where the value
function has its greatest curvature.

Figure 6 plots the difference between the true solution and these approx-

18

imations. A number of features of the adaptive grid generation method are
apparent from these figures. Note that the adaptive method concentrates far
more points in the region of the state space where the value function has its
greatest curvature. As a result it places relatively few points in the region
where the value function is more flat. This results in an approximation error
that is roughly the same size for the entire state space. In contrast note the
dramatic difference in the size of the approximation errors over the capital
grid for the fixed grid approximation. Our experience is that with adaptive
grid generation, adaptively increasing the grid size lowers the approximation
errors for the entire range of capital. For the fixed grid, an extremely large
grid must be solved to get the approximation error down for points where
the value function has its greatest curvature. Much of the computational
burden involved in this is, of course, unnecessary since for large values of the
capital stock the error is already quite small. The results for adaptive grid
generation are, therefore, extremely encouraging.

5 Extensions

There are many ways the algorithms that we propose can be improved and
extended. For the type of application detailed above, the next step will be
to investigate the role of the particular objective function we choose for the
linear program. We currently minimize the sum across all points in the state
space of the value function ordinates. This choice does not affect the solution
for a fixed grid, however, it is very important for adaptive grid generation.
What we propose is to calculate the ergodic distribution of the state space
for each subproblem that we solve. These probabilities can then be used to
weight the value—function ordinates before forming the objective function.
With this weighting, adaptive grid generation will generate more points not
just where they have the biggest effect on values, but rather where they will
have the biggest effect on the most-likely-to-occur values. For problems in
which the main focus is on properties of probability distributions of the so-
lutions, we think that this will provide much more accurate results. The
primary computational issue is whether we must solve for ergodic probabili-
ties in addition to solving the linear program (and if so, what is the relative

19

cost involved), or whether these probabilities can be determined from infor-
mation that is already available from the linear programming algorithm.

More generally, we plan to explore the issue of accuracy for our algorithm
as well as other algorithms. The adaptive grid generation methodology yields
bounds on how much the value function ordinates can be affected by increas-
ing the size of the problem. This provides us with a measure of accuracy.
However, since the values themselves are rarely of fundamental interest, we
plan to extend this concept of accuracy to other properties of the solution
such as actions and ergodic distributions. If this proves successful, we envi-
sion using our algorithm to evaluate the accuracy of solutions provided by
other algorithms as well.

Much of our future research in this area will involve developing compu-
tational methods related to the ones described above for other classes of
economic models. The problems of immediate interest to us include:

e Solutions to other optimum problems such as the growth model with
fixed costs. Fixed costs, in particular, confound many methods that
rely on approximations by smooth functions, since optimal actions may
be subject to large jumps. Value—function iteration is always available
for such problems but, as described above, is not very useful in practice.
Our linear programming methods inherit all of the good properties of
value-function iteration for such problems but eliminate most of the
deficiencies. In particular, adaptive grid generation should prove very
effective for these types of problems since it has the ability to find the
location of discontinuities quickly and accurately.

e Solutions to non-optimum equilibrium problems such as heterogeneous
agent—incomplete markets models. This class of problems has attracted
a lot of attention in both finance and macroeconomics. The problems
that people have been able to address with confidence in accuracy,
however, have been quite limited in terms of complexity. Our goal
here is to be able to solve for equilibria recursively. If our dynamic
programming solutions can be obtained rapidly and accurately, then
we can solve individual-level planning problems conditional on set of
market prices. Given these solutions, we can then calculate new market

20

clearing prices. We then iterate between individual and the market
until we find a fixed point. The advantage of this approach is that it
is very easy to impose restrictions such as borrowing constraints when
solving for value functions. The equilibrium naturally satisfies all of
the constraints automatically.

Solutions to partial differential equations. A common approach to solv-
ing these problems is to discretize the state space and then solve a
system of linear equations. Solutions, however, are very sensitive to
the form of the discretization. As a consequence of this a number of
problem-specific transformations of the state space have been proposed
to ensure that there is a relatively fine discretization over important re-
gions of the state space and a coarse grid over less important regions.
For example, Duffie (1992) details a common change of variables that
has proven successful for interest rate problems. Since interest rates
are are in the interval zero to infinity, the state space is large. How-
ever, experience and intuition dictate that very large interest rates are
highly unlikely. Therefore, a uniformly spaced discrete grid is placed
over 1/(1 4+ vz) rather than the original variable, . The tuning pa-
rameter v dictates how many grid points are used for relatively small
values of x. This is a very sensible approach. Its primary drawback is
that it requires ez ante knowledge of the solution. Our adaptive grid
generation approach can accomplish exactly the same goal without any
knowledge of the ultimate solution.

21

References

Christiano, Lawrence J. (1990), “Linear-Quadratic Approximation and
Value-Function Iteration: A Comparison,” Journal of Business and
Economic Statistics 8, 99-114.

Duffie, Darrell (1992), Dynamic Asset Pricing Theory. Princeton: Princeton
University Press.

Grotschel, Martin and Olaf Holland (1991), “Solution of Large-Scale
Symmetric Travelling Salesman Problems,” Mathematical
Programming 51, 141-202.

Judd, Kenneth L. (1991), Numerical Methods in Economics. manuscript,
Stanford University.

Ross, Sheldon M. (1983), Introduction to Stochastic Dynamic Programming.
Orlando: Academic Press.

Stokey, Nancy L. and Robert E. Lucas, Jr. (with Edward C. Prescott)
(1989), Recursive Methods in Economic Dynamics. Cambridge:
Harvard University Press.

Taylor, John B. and Harald Uhlig (1990), “Solving Nonlinear Stochastic
Growth Models: A Comparison of Alternative Solution Methods,”
Journal of Business and Economic Statistics 8, 1-18.

22

Appendix: C Programs
1. Value Iteration (with Grid Generation)

/s sk ok sk s ok sk ok ok sk ok ok ko o sk sk sk sk sk ok skok o sk sk sk ok ok skok ok sk skok sk sk ok sk ok sk sk ko sk sk sksk ok sk ok ok ok ko ok
* Gridval.c: Program to do value iteration using grid generation

* Last Modified: July 15, 1993 MT
seokskskskokok ko skokok sk sk sk skoksk s sk skokok sk sk sk sk sk sk sk skokok sk ki skokskok sk sksk sk sk sk sk sk skok sk sk sk okok sk ok sk skok sk ok ok ok ok /

#include <math.h>

#define TRUE 1

#define FALSE O

#define ABS(a) (((a) > 0) ? (a) : -(a))
#define MAXT 20001

#define MAXJ 2

#define MAXA 20001

/**

¥ Utility function and feasibility definitions
seokskskskokok ok ok skokok sk sk skoksk sk sk kskok sk sk ki skokoskskoksk sk ok skok sk sk skok sk sk sk skok ok sk sk skok sk ok kskok ok sk kok sk ok ok ok /

#define u(i,j,a) (pow((-k[al+temp[i]l[j]),ro)/ro)
#define valid(i,j,a) ((temp[il[j] - k[al) > 0 ? TRUE : FALSE)

/**

* Other definitions
ok ok ok ok ok ok ok ok ok ok ok oK oKk ok ok ok sk ok ok sk ok ok ok ok sk ok ok ok sk Kok sk ok koK sk ok sk Kk ok ko k ko k /

double max_err;

int max_i,max_j,max_a;
double beta;

double temp[MAXI][MAXJ];
double vi[MAXI][MAXJ];
double v2[MAXI][MAXJ];
double disc_sum[MAXA] [MAXJ];
double max,sum,oldval;
int iter, domne;

double delta;

int skip;

int place;

int num,num_val;

23

int

main ()

{

int

i, J;

double trans[MAXJ][MAXJ],gamma,ro,alpha,k[MAXI],z[MAXJ];
int a,ji;
double low,high,diff;

/*

/*

/*

/*

Read in problem parameters */

ro = .b;

alpha = 0.33;

printf("Range of i : ");
scanf ("%d",&max_1i);
printf("Range of j : ");
scanf ("%d" ,&max_j);
printf("Range of a : ");
scanf ("%d",&max_a);
printf("Value for beta : ");
scanf ("%41lf",&beta);
printf("Value for delta : ");
scanf ("%#1f",&delta);

gamma = 1;

Define values of high and low states */

for (j=0;j<max_j;j++)
z[j] = exp(-.32)+(exp(.32)-exp(-.32))*j/(max_j-1);

Find reasonable range for problem */

low = pow(beta*alpha*z[0]/(1-(1-delta)*beta),1.0/(1.0-alpha));
high = pow(beta*alpha*z[1]/(1-(1-delta)*beta),1.0/(1.0-alpha));
diff = (high-low)/(0.8%max_1i);
low —-= .1*max_i*diff;
high += .1*max_i*diff;
for (a=0;a<max_a;a++)

k[a]l] = low + ((high-low)*a)/(max_a-1);

Define transition matrix */

for (j=0;j<max_j;j++) {
for (j1=0;ji<max_j;ji++) {

24

if (j==j1) trans[jl[j1] = (.975)*beta;
else trans[j]1[j1] = (0.025)/(max_j-1)*beta;
}
}

/* Precalculate expensive part of utility function */

for (i=0;i<max_i;i++) {
for (j=0;j<max_j;j++) {
temp[il [j1 = (1-delta)*k[i]+gamma*pow((double) k[i],alpha)*z[j];
}
}

/* Define initial value for each state */

for(i=0;i<max_i;i++) {
for (j=0;j<max_j;j++) {
for (a=0;a<max_a;a++) {
if (valid(i,j,a)) {
v[i]l[j] = u(i,j,a)/(1-beta);
break;
}
if (a==max_a) printf("No valid action for %d %d\n",i,j);
}
}

/* Define initial grid */

skip = (max_i-1)/2;
done = FALSE;
iter = 0;

/* Outer loop to refine grid */

while (!'done) {
iter++;
done = TRUE;

/* Precalculate expensive operation each iteration */

for(a=0;a<max_a;at+=skip) {
for (j=0;j<max_j;j++) {
disc_sum[al[j] = 0;
for (j1=0;ji<max_j;ji++) {
disc_sum[a] [j] += trans[j1[ji1l*vi[al[j1];

25

}
}

/* Loop through each state looking for improved value */

for (i=0;i<max_i;i+=skip) {
for (j=0;j<max_j;j++) {

max = —-10000000.0;

for (a=0;a<max_a;a+=skip) {
if (!'(valid(i,j,a))) continue;
sum = u(i,j,a)+disc_sum[al[j];
if (sum > max) max = sum;

}

v2[il[j] = max;

if (ABS(max-vi[i]l[j]) > .000001) done = FALSE;

}
}

/* Update values */

for(i=0;i<max_i;i+=skip) {
for(j=0;j<max_j;j++) {
vi[il [j1=v2[i]1[j];
}
}

/* Check if finished? */

if (done) {
if (skip > 1) {

/* Refine grid */

printf("At iteration %d with skip %d\n",iter,skip);
done = FALSE;
for (i=skip/2;i<max_i;i+=skip) {
for (j=0;j<max_j;j++) {
vi[il[j] = .5*(vi[(i-skip/2)]1[jl1+vi[i+skip/2]1[j1);
}
}
skip = skip/2;

26

}
}

printf("Done Value Iteration (with grids) after %d iterations.\n",iter);

} /* END MAIN */

2. Constraint Generation (with Grid Generation)

/s sk ok sk s ok sk ok ok sk ok o ko sk sk sk ks sk ok skok sk stk s ok skok sk skok sk sk ok sk sk sk sk sk sksk ok sk ok ok ok sk ok
* Gridgen.c: Program to do constraint generation using grids

* Last Modified: July 15, 1993 MT
seokskskskokok s ok ok skokok sk s sk skokosk s s skokosk sk ok skksk sk sk skskskok sk ki skl skok sk sk sk sk sk ok sk skskok sk sk sk skok sk ok sk skok sk ok ok ok ok /

#include "cpxdefs.inc"
#include <math.h>
#define TRUE 1

#define FALSE 0

/**

¥ Utility function and feasibility definitions
seokskskskokok sk ok ok skokok sk sk skokskoskok sk skskok sk sk ki skokokskskskskokskok sk sk skok sk skskskok ok sk sk skok sk ok kb ok sk sk kok sk k ok ok /

#define wu(i,j,a) (pow((-k[al+temp[i]l[j]),ro)/ro)
#define valid(i,j,a) ((temp[il[j] - k[al) > 0 ? TRUE : FALSE)

/**

* Other definitions
3k ok ok ok ok 3ok ok o ok ok ok sk ok ok ok s ok ok ok sk ok ok sk ok ok ok sk ok ok ok sk Kok sk ok Kk ok ok sk ok sk Kk ok k ko k ko k /

#define ABS(a) (((a) > 0) 7 (a) : -(a))
#define MAXI 17000

#define MAXJ 2

#define MAXA 17000

#define MACSZ MAXI*MAXJ*6
#define MARSZ MAXI*MAXJ
#define MATSZ MACSZ* (MAXJ+1)
#define COLADD MAXI*MAXJ*6
#define ENTRYADD COLADD*(MAXJ+1)
#define CSTORSZ 0

#define RSTORSZ 0

27

/* Linear program variables */

char *probname = "dynamic";

int objsen = -1;

double objx[MACSZ],objxadd[COLADD];
double rhsx[MARSZ];

char senx [MARSZ] ;

int matbeg [MACSZ] ,matbegadd [COLADD] ;
int matcnt [MACSZ] ,matcntadd [COLADD] ;
int matind [MATSZ] ,matindadd[ENTRYADD] ;

double matval[MATSZ],matvaladd[ENTRYADD];
double bdl[MACSZ],bdladd[COLADD];
double bdu[MACSZ],bduadd[COLADD];

char *dataname = NULL;
char *objname = NULL;
char *rhsname = NULL;
char *rngname = NULL;
char *bndname = NULL;
char *cname = NULL;
char *rname = NULL;
int macsz = MACSZ;
int marsz = MARSZ;
int matsz = MATSZ;
unsigned cstorsz = CSTORSZ;

unsigned rstorsz = RSTORSZ;
int lpstat;

double obj;

double x[MACSZ];

double pi[MARSZ];

double slack[MARSZ];

double dj[MACSZ];
/* Other variables */

int low,high;
int max_i,max_j,max_a;
double beta;
double delta;

int skip;

int place,placel;
double max;

int done;

int new_col,new_entry;

28

int max_col,max_entry;
double sum;

double temp[MAXI][MAXJ];
double disc_sum[MAXA] [MAXJ];
int tot_var;

int action[MAXI][MAXJ];
int icol[MACSZ];

int jcol[MACSZI;
int acol[MACSZ];

int

main ()

{

struct cpxlp *1p = NULL;

FILE *logfile = NULL, *changefile = NULL;
int status;

int i, j;

int toosmall, toobig;

double trans[MAXJ][MAXJ],gamma,ro,alpha,k[MAXI],z[MAXJ];
int a,ji;
double low,high,diff;

/* Set up log file for CPLEX #*/

if (!'logfile
setlogfile (logfile)
setscr_ind (1) A
printf ("Failure to connect logging channel.\n");
goto TERMINATE;

logfile = fopen ("dyn.log", "w");
I
=0 |l

0
0

/* Prepare to solve the dual of the stochastic DP */

/* Read in the problem size. */

matsz = 0;
macsz = 0;
marsz = 0;

29

ro = .b;

alpha = 0.33;

beta = .98;

printf("Range of i : ");
scanf ("%d",&max_1i);
printf("Range of j : ");
scanf ("%d",&max_j);
printf("Range of a : ");
scanf ("%d",&max_a);
printf("Value for beta : ");
scanf ("%1lf",&beta);
printf("Value for delta : ");
scanf ("%1f",&delta);

gamma = 1.0;

max_col = MACSZ;

max_entry = MATSZ;

Generate the problem */

max_a = max_ij;
for (j=0;j<max_j;j++)
z[j] = exp(-.32)+(exp(.32)-exp(-.32))*j/(max_j-1);

low = pow(beta*alpha*z[0]/(1-(1-delta)*beta),1.0/(1.0-alpha));
high = pow(beta*alpha*z[1]/(1-(1-delta)*beta),1.0/(1.0-alpha));
diff = (high-low)/(0.8%max_1i);
low —-= .1*max_i*diff;
high += .1*max_i*diff;
printf("Low is %1f high is %1f\n",low,high);
for (a=0;a<max_a;a++)

k[a]l = low + ((high-low)*a)/(max_a-1);

for (j=0;j<max_j;j++) {
for (j1=0;ji<max_j;ji++) {
if (j==j1) trans[jl[j1] = (.975)*beta;
else trans[j]1[j1] = (0.025)/(max_j-1)*beta;
}
}

Generate expensive calculation outside of loop */

for (i=0;i<max_i;i++) {
for (j=0;j<max_j;j++) {

30

temp[il [j]1 = (1-delta)*k[i]+gamma*pow(k[i],alpha)*z[j];
}
}

/* Put in artificial action */

matbeg[0] = 0;
for(i=0;i<max_i;i++) {
for(j=0;j<max_j;j++) {

/* Use lowest feasible action in each state */

for (place=0;place<max_a;place++)
if (valid(i,j,place)) break;
if (place ==max_a) {
printf("No valid action for %d %d\n",i,j);
goto TERMINATE;
}
objx[macsz] = u(i,j,place);
bdl[macsz] = 0.0;
bdulmacsz] = INFBOUND;
matcnt [macsz] = 0;
if (i!'= place) {
matval[matsz] = 1;
matind[matsz] = i*max_j+j;
matsz++;
matcnt [macsz]++;

}

else {
matval[matsz] = 1-trans[j1[j];
matind[matsz] = i*max_j+j;
matsz++;
matcnt [macsz] ++;

}

for (j1=0;ji<max_j;ji++) {
if ((i==place)&&(j1==j)) continue;
matval[matsz] = -trans[j]1[j1];
matind[matsz] = place*max_j+j1;
matsz++;
matcnt [macsz]++;

}

icol[macsz] i;

jcol[macsz] = j;

acol[macsz] = place;

31

/*

/*

/*

/*

/*

macsz++;
matbeg[macsz] = matbeg[macsz-1] + matcnt[macsz-1];
}
}

RHS */

for (i=0;i<max_i;i++){
for(j=0;j<max_j;j++){
rhsx[marsz] = 1;
senx[marsz] = ’E’;
marsz++;
}
}

tot_var = macsz;
Load in the linear program */

lp = loadprob (probname, macsz, marsz, O, objsen, objx, rhsx,
senx, matbeg, matcnt, matind, matval,
bdl,bdu, NULL, NULL,
NULL, NULL, NULL, NULL, NULL,
dataname, objname, rhsname, rngname, bndname,
NULL, NULL, NULL, NULL, NULL, NULL,
max_col, marsz, max_entry, 0, O, cstorsz,
rstorsz, 0);

if (1p == NULL) goto TERMINATE;

Optimize the linear program and get solution */

status = optimize (1p);
status = solution (1lp, &lpstat, &obj, x, pi, slack, dj);
if (status) goto TERMINATE;

Set skip to determine active grid */

skip = (max_i-1)/16;

done FALSE;
Outer loop to determine level of grid refinement */

while (!done) {

32

status = solution (lp, &lpstat, &obj, x, pi, slack, dj);
if (status) goto TERMINATE;

done = TRUE;

new_col = 0;

new_entry = 0;

matbegadd[0] = 0;

/* Calculate expensive calculation outside of i loop */

for(a=0;a<max_a;at+=skip) {
for (j=0;j<max_j;j++) {
disc_sum[a] [j] = 0;
for (j1=0;ji<max_j;ji++) {
disc_sum[a] [j] += trans[j][ji1]*pila*max_j+ji1];
}
}
}

/* Determine if there is a better action */

for (i=0;i<max_i;i+=skip) {
for(j=0;j<max_j;j++) {
max = 0.000001;
placel = -1;
for (a=0;a<max_a;a+=skip) {
if (!'(valid(i,j,a))) continue;
sum = u(i,j,a)-pili*max_j+j] +disc_sum[a][j];
if (sum > max) {
max = sum;
placel = a;
¥
}

if (placel >=0) {
/* Add in better action */

place = placel;

done = FALSE;

objxadd[new_col] = u(i,j,place);
bdladd[new_col] = 0.0;
bduadd[new_col] = INFBOUND;
matcntadd[new_col] = 0;

if (i!= place) {

33

1;
i*max_j+j;

matvaladd[new_entry]
matindadd[new_entry]
new_entry++;
matcntadd[new_col]++;

}

else {
matvaladd[new_entry] = 1-trans[j1[j];
matindadd[new_entry] = i*max_j+j;
new_entry++;
matcntadd[new_coll++;

¥

for (j1=0;ji<max_j;ji++) {
if ((i==place)&&(j1==j)) continue;
matvaladd[new_entry]l = -trans[j]1[j1];
matindadd[new_entry] = place*max_j+j1;
new_entry++;
matcntadd[new_col]++;

}

icol[macsz] = i;

jcol[macsz] = j;

acol[macsz] = place;

macsz++;

new_col++;

matbegadd[new_col] = matbegadd[new_col-1] +
matcntadd[new_col-1];

}
}
}

if ('dome) {
/* If some better actions found, then add in new columns */

printf("Adding %d columns (size %d) ... ",
new_col,new_entry);
tot_var += new_col;
if (tot_var > max_col) {
printf("0OUT OF SPACE! Max cols is %d.\n",max_col);
goto TERMINATE;
¥
status = addcols (lp, new_col, new_entry,objxadd,
matbegadd, matindadd,
matvaladd, bdladd,
bduadd, NULL);

34

printf("done.\n");
/* Optimize linear program */
status = optimize (1lp);

if (status) goto TERMINATE;
}

/* Otherwise, refine grid if possible */

if (dome) {
if (skip !'= 1) {

done=FALSE;

for(place=0;place < macsz;place++) {
if (x[place] > .000001) {

action[icol[placell[jcollplacel]l=acol[placel;

}

}

new_col = 0;

/* Add in three actions centered on midpoint of actions for
adjacent states for each new point */

for (i=skip/2;i<max_i;i+=skip) {
for(j=0;j<max_j;j++) {
low = (action[i-skip/2][jl+action[i+skip/2]1[j1)/2
-skip/2;
high = low+skip;
for (place=low;place<=high;place+=skip/2) {
if ((place < 0) || (place >= max_a)) continue;
if (!'(valid(i,j,place))) continue;
objxadd[new_col]l = u(i,j,place);
bdladd[new_col] = 0.0;
bduadd[new_col] = INFBOUND;
matcntadd[new_col] = 0;
if (i!'= place) {
matvaladd[new_entry] = 1;
matindadd[new_entry] = i*max_j+j;
new_entry++;
matcntadd[new_col]++;
¥
else {

35

matvaladd[new_entry] = 1-trans[j][j];
matindadd[new_entry] = i*max_j+j;
new_entry++;

matcntadd[new_coll++;

}

for (j1=0;ji<max_j;ji++) {
if ((i==place)&&(ji1==j)) continue;
matvaladd[new_entry] = -trans[jI1[j1];
matindadd[new_entry] = place*max_j+j1;
new_entry++;
matcntadd[new_col]++;

}

icol[macsz] = i;
jcol[macsz] = j;
acol[macsz] = place;

macsz++;
new_col++;
matbegadd[new_col] = matbegadd[new_col-1] +
matcntadd[new_col-1];
}
}
}

/* Add in adjacent actions for old states */

for (i=0;i<max_i;i+=skip) {
for(j=0;j<max_j;j++) {
low =action[i] [j]1-skip/2;
high = low+skip;
for (place=low;place<=high;place+=skip) {
if ((place < 0) || (place >= max_a)) continue;
if (!'(valid(i,j,place))) continue;
objxadd[new_col]l = u(i,j,place);
bdladd[new_col] = 0.0;
bduadd[new_col] = INFBOUND;
matcntadd[new_col]l = 0;
if (i!'= place) {
matvaladd[new_entry] = 1;
matindadd[new_entry] = i*max_j+j;
new_entry++;
matcntadd[new_col]++;
}
else {
matvaladd[new_entry] = 1-trans[j][j];

36

matindadd[new_entry] = i*max_j+j;
new_entry++;
matcntadd[new_col]++;

¥

for (j1=0;ji<max_j;ji++) {
if ((i==place)&&(ji1==j)) continue;
matvaladd[new_entry] = -trans[jI1[j1];
matindadd[new_entry] = place*max_j+ji;
new_entry++;
matcntadd[new_col]l++;

¥

icol[macsz] = i;

jcollmacsz] = j;

acol[macsz] = place;

macsz++;
new_col++;
matbegadd[new_col] = matbegadd[new_col-1] +
matcntadd[new_col-1];
}
¥
}
skip = skip/2;
printf ("NEW PHASE (skip %3d) Adding %d columns (size %d)
skip,new_col,new_entry);
tot_var += new_col;
if (tot_var > max_col) {
printf("0OUT OF SPACE! Max cols is %d.\n",max_col);
goto TERMINATE;
}
status = addcols (lp, new_col, new_entry,objxadd,
matbegadd, matindadd,
matvaladd, bdladd,
bduadd, NULL);
printf("done.\n");
status = optimize (1lp);

if (status) goto TERMINATE;
}
}

} /* While 'done */

/* Finished: print out results. */

37

3

printf("Completed successfully!\n");

cpxmsg (cpxresults, "\nSolution status = %d\n", lpstat);
cpxmsg (cpxresults, "Solution value = %f\n", obj);
cpxmsg(cpxresults, "Number of pivots: %d\n",getitc(lp));
cpxmsg(cpxresults, "Number of variables = %d\n",tot_var);
printf("Final number of columns : %d\n",macsz);

TERMINATE:

printf("Terminating\n");
/* Flush all channels before deleting files as destinations. */

flushchannel (cpxresults);
flushchannel (cpxlog);
flushchannel (cpxerror);
flushchannel (cpxwarning);

/* Delete log file from all four channels and close. */

setlogfile (NULL);
if (logfile) fclose (logfile);

/* Delete changefile from results channel, then close. */

delfpdest (cpxresults, changefile);
if (changefile) fclose (changefile);

} /* END MAIN */

38

