A Schedule-then-Break Approach to Sports
Timetabling

Michael A. Trick

GSIA, Carnegie Mellon, Pittsburgh PA 15213, USA
trick@cmu.edu
http://mat.gsia.cmu.edu

Abstract. Sports timetabling algorithms need to be able to handle a
wide variety of requirements. We present a two-phase method where the
first phase is to schedule the teams ignoring any home and away require-
ments and the second phase is to assign the home and away teams. This
approach is appropriate when there are requirements on the schedule
that do not involve the home and away patterns. Examples of this in-
clude fixed game assignments and restrictions on the effect carry-overs
can have. These requirements can be met early in the process and the
best home and away patterns can then be found for the resulting sched-
ules.

1 Introduction

Creating a sports timetable is challenging due to the variety of different needs
that must be addressed. This has led to a plethora of alternative approaches.
While many of the approaches have a common thread due to their division of
the problem into a number of common subproblems, these methods differ in the
order in which subproblems are solved and the solution method(s) chosen.

We present results on an alternative approach for solving a standard sports
timetabling problem. In this problem, teams must play a round-robin tourna-
ment among themselves, with each game played at the home field of one of the
competing teams. We assume that the number of teams is even and that dur-
ing every time period, or slot, every team plays exactly one game. This sort of
timetable occurs very often in competitions where each team represents a city or
other region and the competition occurs over an extended period of time. This
contrasts with the situation where many teams share a single field, or where all
teams are brought to a single location for the competition.

This round robin scheduling, or variants thereof, has appeared often in the
literature. Examples include minor league baseball (Russell and Leung [17]),
college basketball (Ball and Webster [2]; Nemhauser and Trick [12]; Walser [22];
Henz [9]), Australian basketball (de Werra, Jacot-Descombes, and Masson [25]),
and Dutch professional football (Schreuder [20]), and has been explored exten-
sively independent of particular sport (de Werra [23,24]; Schreuder [19]; Henz
[8]; Schaerf [18]).



In this paper, we look at an alternative approach to solving these types of
problems. In this approach, we divide the problem into two phases. In the first
phase (the scheduling phase), we assign games to be played without concern for
the home/away decision. Our second phase (the break phase) then assigns home
and away teams in such a way as to minimize the occurrence of bad structures
(here defined to be consecutive home games or consecutive away games for a
team, or breaks). This approach is particularly useful when there are require-
ments on the schedule that don’t involve home/away patterns. An example is to
create a schedule where a number of games are fixed a priori.

This approach uses constraint and integer programming to solve the two
phases. The scheduling problem is a natural combinatorial design problem. This
can easily be extended to allow fixed games and to implement the carry-over
restrictions of Russell [16].

The break problem has been studied by Régin in [13,14]. In this work, we
present an integer programming formulation that is able to solve larger instances
than the constraint programming method of Régin. Our success is due in part to
applying Régin’s discoveries in constraint programming to our integer program-
ming formulation.

Section 2 outlines the standard multiphase approach to sports timetabling
and gives our general approach to this problem. Section 3 then develops our
scheduling phase and Section 4 gives our break phase. We conclude with some
open problems.

2 Multiphase Approach to Sports Timetabling

Sports timetabling problems come in two broad types: temporally relaxed and
temporally constrained. In a temporally relaxed schedule, the number of days
on which games can be played is larger than the minimum number needed. Ex-
amples of such timetables include that of (American) National Basketball (Bean
and Birge [3]) and National Hockey League schedules (Ferland and Fleurent [7]).
In these leagues, teams may play on any day of the week, but would typically
only play on 2 or 3 of them in any week. These schedules may look difficult,
due to the additional decision of choosing a day on which to play, but many
effective heuristic techniques have been developed. Other examples of competi-
tions with temporally relaxed schedules include the scheduling of cricket matches
(Armstrong and Willis [1]; Willis and Terrill [26]; Wright [27]).

In a temporally constrained schedule, the length of the schedule is chosen so
there is just enough time to play all of the games. While there is no longer a
decision on when to play (each team will play as much as possible), there is also
no longer the extra flexibility needed to apply the heuristic techniques listed
above. Determining a reasonable local search neighborhood seems a difficult
question in a temporally constrained problem, though Walser [22] reports success
using his general local search methods for integer programs.

A number of researchers have attacked this problem in various ways (Ball
and Webster [2]; Henz [8,9]; Nemhauser and Trick [12]; Russell and Leung [17];



Schaerf [18]; Schreuder [19,20]; de Werra [23,24]; de Werra, Jacot-Descombes,
and Masson [25]). All of this work can be seen as addressing a number of sub-
problems. These subproblems include the following:

1) Finding Home-Away Patterns (HAP). Find a set of n strings of H (Home)
and A (Away) of length n-1 that corresponds to the home and away sequence of
a team.

For six teams, a possible HAP would be

: HAHAH
: AHAHA
: HHAAH
: HAHHA
: AAHHA
: AHAAH

DU WN -

2) Assign games consistent with the HAP (so if i plays j in a slot, then either
iis home and j is away, or the reverse). For the above, we might get the following
timetable (+ denotes at home; - is away), to get a Basic Match Schedule (BMS):

: +2 -3 +6 -4 +5
: -1 +44 -5 +6 -3
: +6 +1 -4 -5 +2
: 45 -2 +3 +1 -6
: -4 -6 +2 +3 -1
: -3 +5 -1 -2 +4

DU WN -

3) Assign teams to the BMS to complete the timetable. If the teams were
A B,C,D,E,F, then we might assign them to 3,6,5,4,2,1 respectively to get the
final timetable:

+E -A +B -D +C
-F +D -C +B -A
+B +F -D -C +E
+C -E +A +F -B
-D -B +E +A -F
-A +C -F -E +D

QoMM

Alternative approaches to sports timetabling differ in the order in which they
solve the subproblems and the method employed to solve each of the subprob-
lems. For instance, Nemhauser and Trick [12] solved the subproblems in the order
given above and used integer programming for problems 1 and 2, and complete
enumeration for problem 3. Henz [9] then improved on this by using constraint
programming for all three steps, where the speedup on problem 3 was enormous.
Walser [22] used a heuristic integer programming technique to avoid breaking
the problem into three subproblems.

The decision on which order to do the subproblems depends on the impor-
tance of the decision being made. In general, the more critical an aspect of



a schedule, the more important it is to fix that decision early in the process.
The above ordering makes the form of the Home-away patterns most important.
Leagues with other requirements may need to consider alternative orderings.

We will consider the case where the game assignment issue in step 2 is crit-
ical, even ignoring the home and away aspects. For instance, there might be a
number of pre- assigned games that must be played in particular slots. Examples
where this occurs include required television matchups and required “traditional
matchup” requirements. Both of these occurred in the creation of the Atlantic
Coast Conference basketball schedule of Nemhauser and Trick [12]. While the
requirements in the year given in that paper were not extensive, latter years
added many more required match opponents, which made the original multiple
phase approach presented less appealing.

Another reason to consider step 2 (even before home/away assignment) is the
work of Russell [16]. Russell looked at the issue of carry-over effects: if A plays
B in round 1, then plays C in round 2, then C gets a carry-over effect from B. If
B is a very difficult team, then C may gain an advantage. Russell showed that
if the number of teams is a power of 2, then the advantages can be spread out
evenly among the teams, and he gave a construction in this case. For other sizes,
he gave a heuristic solution to minimize the variance of the carry-over effect.
These give schedules to which home and away decisions would then be applied.

Our approach is therefore to first schedule the teams and then find the home
team for each game. This is the following two-phase approach:

1) Find a schedule of the teams (ignoring home and away) that is consis-
tent with the required match opponents or other requirements on the schedule
(schedule phase).

2) Assign the home team to each game to give good home/away patterns
(break phase).

The definition of good home/away patterns is very league-dependent. Wallis
[21] looked at this problem in the context of creating a schedule so that the teams
are paired with one being at home and one away during each period. Schreuder
[19] and de Werra [23, 24] addressed this in the context of minimizing the breaks
in a timetable. In these models, the ideal pattern is alternating homes and aways
(this is a very reasonable requirement for many real leagues). Any deviation from
this, in the form of two consecutive aways or two consecutive homes, is a break.
Schreuder and de Werra developed a number of structural conditions and bounds
on the number of breaks. This work combined the schedule and the break phase
to give schedules with the minimum number of breaks.

Régin [13,14] looked at the break phase for arbitrary schedules and gave
a constraint programming approach to the problem of minimizing the number
of breaks. We will continue this direction by adopting a definition of “good
home/away patterns” to mean the set of patterns that minimizes the number of
breaks.

The next two sections look at each phase of this approach in turn.



3 Schedule Phase

The schedule phase might be solved in a number of ways, depending on the
exact requirements on the schedule. In the absence of constructive techniques,
like those of Russell [16], we need a computational method for finding schedules.
Ideally, such a method would be flexible enough to allow alternative evaluation
rules, and allow such extensions as fixing particular games. We will concentrate
on the issue of fixed games and conclude with some comments on the carry-over
model.

Given n teams (labeled 1..n), and a series of triplets (i,j,t), find a round-robin
schedule for the teams such that i plays j in slot t. For six teams, the input might
look like:

Slot 1 2345
A: BF C
B: A F
C: D EA
D: CE
E: FDC
F: EAB

One output would be:

Slot 1 23 45
A: BFDCE
B: ACFED
C: DBEAF
D: CEAFB
E: FDCBA
F: EABDC

This problem is an example of a “completion problem” in combinatorial de-
sign. Colbourn [6] showed that many of these problems, including the one we
address, are NP-complete (de Werra [24] gives some instances related to sports
scheduling that can be solved quickly). Our goal is to create a reasonable com-
putational method, rather than solve the problem for extremely large instances.
Therefore, we explore two alternative constraint programming approaches for
generating solutions to these problems.

We begin with the case that there are no required game placements. In this
case, we are only trying to generate tournament schedules, a problem closely
related to finding latin squares. Of course, many construction techniques are
known for finding a schedule, but these typically find only one or a small number
of schedules, so are unsuitable for our purposes.

Our first formulation for this is perhaps the most natural. A variable is
set for each (team,time) pair which gives the opposing team in that time slot.
Constraints are added to ensure that every team plays every other team and that
symmetry holds: if i plays j then j plays i. This formulation can be strengthened



by including the constraint that for every time slot, every team plays some
opponent. We can also break the symmetry of the formulation by labeling team
1’s opponents 2, 3,...,n in order. We call this the Opponent Formulation. The
OPL (ILOG [10]) code for this is given in Figure 1.

int n=20;

range Teams 1..n;

range Time 0..n-2;

range Opponent 1..n;

var Opponent opponent[Time,Teams];

solve {

forall (i in Teams) {
alldifferent(all (t in Time) (opponent[t,il));
forall (t in Time) {

opponent [t,opponent [t,i]] = i;

opponent [t,i] <> i;
};

};

forall (t in Time) {
alldifferent(all (i in Teams) (opponent[t,i]));
opponent [t,1] = t+2;

};

Fig. 1. Opponent Formulation

An alternative formulation is to give, for each pair of teams, the slot in which
the teams play. Each team must play only one game in a slot, and symmetry can
be broken as above. This is the Slot Formulation. The OPL code is in Figure 2.

The formulations act very similarly (and an appropriate search strategy can
make them act nearly identically), but some constraints are easier to write in
one model than the other. Each model can generate a 20-team schedule in less
than 1 second and generate 500 20-team schedules in around a minute. OPL
has the capability of using different propagation algorithms for the “alldifferent”
constraint: the strongest setting of “onDomain” gave the best results for these
tests.

Rosa and Wallis [15] explored the concept of “premature sets”: assignments
of games to slots in such a way that the schedule could not be completed. They
showed that such premature sets could occur and placed bounds on the size
of the sets. Perhaps surprisingly, neither formulation for this problem had any
difficulty with these premature sets: no backtracking was needed for any of the
instances up to size 20. This is not true for larger instances.

The behavior of these formulations is not changed significantly by the addi-
tion of game requirements (of course, the problem is difficult, so there must exist



int n=20;

range Teams 1..n;

range Slots 0..n-1;

var Slots slot[Teams,Teams];

solve {
forall (i in Teams) {
alldifferent(all (j in Teams) (slot[i]1[j1));
alldifferent(all (j in Teams) (slot[jl1[il));
slot[i,i] = 0;
forall (j in Teams) {
slot[i,jl = slot[jl1[il;
slot[1,j] = j-2;
h;
I
};

Fig. 2. Slot Formulation

difficult instances, but they do not seem to occur in the 10-20 team instances of
interest). Empirically, it seems that adding game requirements makes this phase
solve more quickly. Other types of constraints may be more difficult to handle,
but forced pairings seem easy.

It should be noted that the Opponent Formulation could be modified to find
the balanced- carry-over schedules of Russell [17]. Simply adding the constraint:

alldifferent(all (t in time: t>0)
(opponent [t-1,opponent[t,i]]));

prevents a team from having more than one carry-over effect on team i. The
resulting formulation solves quickly for 8 teams, and very slowly (on the order
of a day) for 16 teams. Russell (1980) also addresses the question of minimizing
the variance of the carry-over effects (equivalently the sum of squared carry-over
counts). Again this is simply the addition of a constraint to either scheduling
formulation. For six teams, he found a schedule with a value of 60, and we can
confirm that is indeed optimal. For ten teams, his value of 138 is suboptimal:
there exists a schedule of value 122. The computational time for a straightforward
modification of our formulations are very high (it took one day to find the ten
team solution), so this is an opportunity for further work.

4 Break Phase

The second phase of our approach is to assign the home team (and away team)
to each game in a schedule to create a timetable. We wish to assign home/away
teams in such a way as to minimize the number of breaks (consecutive home



games or consecutive away games). This problem turns out to be much more
difficult than the first phase.

Régin [13,14] has examined this problem in detail using constraint program-
ming. Using a natural formulation (with 0-1 variables) and extensive symmetry
breaking and dominance rules, his best results take 5.2 seconds for a 16 team
instance, 80 seconds for an 18 team instance, and 5603 seconds for a 20 team
instance (Régin’s timings are on a 200Mz Pentium computer, so the “normal-
ized” timings for a 266 Mz machine would be 3.9 seconds, 60 seconds, and 4213
seconds respectively).

We present an integer programming model for this problem that is at least
competitive with Régin’s constraint programming model. While the model is not
difficult, it has a number of pieces, all of which are needed in order to have the
model work effectively.

The variables for this formulation could be chosen in many ways. We begin
with three major variables:

start[i]l: 1 if team i starts at home, and 0O otherwise.
to_home[i,t]:1 if team i goes home after slot t, and O otherwise
to_away[i,t]:1 if team i goes away after slot t, and O otherwise

From these variables, it is easy to determine if team i is home in slot t or not:
at_home[i,t]= start[i]+sum(t1<t) (to_home[i,t1]-to_away[i,t1])

is 1 if team i is at home in time t, and 0 if team i is away in time t.

We limit the at_home variables to be 0 or 1. The at_home variables are not
needed in the formulation (we can replace them with the identity above), but
they make the exposition cleaner.

The primary constraint is that for every pair of teams i, j, if they play in slot
t then

at_home[i,t]+at_home[j,t] = 1

We also need a constraint that for every team i and time t, the team cannot
go both home and away:

to_home[i,t]+to_away[i,t] <= 1

This formulation is a sufficient integer program. Unfortunately, it works ex-
tremely poorly: even for an 8 team example, the program takes 81 seconds, while
a 10 team example would not solve in 1200 seconds.

To improve this formulation, we begin by breaking symmetry as Régin did: we
assume that team 1 begins at home. Since clearly any schedule can be “flipped”,
reversing home and away, such an assignment does not affect the optimal solu-
tion. This has only a marginal effect, decreasing the 8 team time to 75 seconds
without allowing us to solve the 10 team example (in 1200 seconds).



We then try to strengthen the constraints to avoid unwanted fractional val-
ues that slow down the branch and bound search. We can strengthen the use
of to_home and to_away by noting that the requirement on at_home does not
prohibit setting both to_homeli,t] and to_awayl[i,t] to each be 0.5 no matter what
at_homeli,t] is. We can therefore strengthen the formulation by adding the con-
straints:

at_home[i,t]+to_home[i,t] <= 1;
at_home[i,t]-to_away[i,t] >= 0;

for all i and t. This formulation is much better, solving the 8 team example in 4
seconds and the 10 team example in 75 seconds.

To improve performance, we need to add additional constraints that force
breaks to be taken when the teams need them. Consider three teams A, B, and
C such that A plays B in slot 1, B plays C in slot 2, and A plays C in slot 3.
Then, it is easy to see that either A has a break after slots 1 or 2, or B has a
break after slot 1, or C has a break after slot 2. To see this, suppose A is home to
B in slot 1. If there are no breaks, then B is home to C in slot 2, so C is home in
slot 3. But A is also home in slot 3! Therefore, there must be a break involving
one of the three teams. This generalizes to any three teams in any three slots: if
we have teams i, j, and k who play in slots slot][i,j]<slot[j,k]<slot[i,k], then either

— i has a break between slot[i,j] and slot[i,k], or
— j has a break between slot[i,j] and slot[j,k], or
— k has a break between slot[j,k] and slot[i,k]

This triangle constraint is very powerful because it links teams and forces
one or more of them to take a break when the fractional solution might not do
s0. The resulting OPL code for this formulation is shown in Figure 3.

We can improve on this formulation in a number of different ways. In general,
we will try to exploit knowledge of what solutions must look like in order to avoid
unnecessary branching. Two improvements are

— Breaks come in pairs (if one team goes AA, then another team must go
HH). Therefore, once the gap in the branch and bound tree is less than 2,
the search can stop.

— In any slot, there are either no breaks or at least two breaks.

We can branch on auxiliary variables that model this latter requirement. In
the tests below, we simply created two subproblems: the first with no breaks
in the first period, and the second with at least two. This alone was a great
improvement over just branching on the natural variables. The instances we
were looking at now become trivial: the 8 team example solves in .4 seconds
while the 10 team example takes 3.5 seconds. Table 1 shows values for larger
instances:

It should be noted that this is not a serious computational test: it is only
on the size 20 instance that we are even solving the same instance as Régin.
On the smaller problems, the differences are well within the range of variation



Size Régin IP

16 4 22
18 60 43
20 4213 1092
22 2293

Table 1. Sample Computation Times

across individual instances. It is clear, however, that the IP approach is at least
comparable to the constraint programming approach of Régin, and seems to be
scaling up perhaps a little better.

5 Extensions and Conclusions

We have presented an alternative approach to creating sports timetables in cases
where a fixed game assignment is a critical feature. We presented effective solu-
tion techniques for the two subproblems and showed how they could be used for
leagues with up to approximately 20 teams.

There are a number of extensions that would make this work more applicable
to real sports leagues. Perhaps foremost would be extending this work to double
round-robin tournaments. Such a schedule is often played in real leagues, and
leads to the additional complication that of the two games between a pair of
teams, each team must be at home for one of them. This makes the problem
much harder to solve.

Another approach would be to apply a more realistic measure of good home/away
patterns. While breaks are important, some breaks are worse than others. For
instance, a sequence like AAA is often much worse than AAHAA, although each
have 2 breaks. And many leagues, including many US college basketball confer-
ences and Major League Baseball actually prefer to go 2 games at home or 2
away before breaking. How can sequences like AAHHAAHH be encouraged in
this model?

Sports scheduling provides a rich field for creating and testing constraint
and integer programming formulations. The Break Phase solution presented was
helped by the constraint programming efforts of Régin. Perhaps the biggest
question of this work is to determine how integer programming and constraint
programming can work together to solve these problems.



int n= ...;

range Teams 1..n;

range Time [1..n-1];

range TweenTime [1..n-2];

range Binary [0..1];

range Slot [0..n-1];

Slot slot[Teams,Teams] = ...;//slot[i,j] is the slot when i plays j
var Binary to_away[Teams,TweenTime] ;

var Binary to_home[Teams,TweenTime];

var Binary start[Teams];

range 0bj [0..n*n];
var Obj obj;

maximize
obj
subject to {
//Minimizing breaks is the same as maximizing non-breaks
obj = sum (i in Teams, t in TweenTime) (to_away[i,t]+to_home[i,t]);
start[1] = 1;
forall (i in Teams, t in TweenTime ) {
to_away[i,t]+to_home[i,t] <= 1;
};
forall (i in Teams, t in [2..n-1]) {
0<= start[i]+sum(tl in [1..t-2]) (to_homeli,t1]-
to_away[i,t1])+to_home[i,t-1] <= 1;
0<= start[i]+sum(t1l in [1..t-2]) (to_homel[i,t1]-to_awayl[i,t1])
-to_away[i,t-1] <= 1;
};
forall (i in Teams, t in [2..n-1]) {
0<= start[i]+sum(t1l in [1..t-1]) (to_homel[i,t1]-to_awayl[i,t1])
<= 1;
};
forall (ordered i,j in Teams) {
start[i]+start[j] + sum(t in [1..slot[i,jl-1]1)
(to_home[i,t]-to_away[i,t])
+ sum (t in [1..slot[i,jl-1]1) (to_home[j,t]l-to_away[j,t]) = 1;
};
forall (i,j,k in Teams : (i<>k) & (j<>k) & (i<>j) &
(slot[i,jl<slot[j,k]) & (slot[j,kl<slot[i,k])) {
sum(t in [slot[i,j]..slot[i,k]-1]) (to_away[i,t]+to_home[i,t]) +
sum(t in [slot[i,jl..slot[j,kl1-1]1) (to_away[j,t]l+to_home[j,t]) +
sum(t in [slot[j,k]..slot[i,k]-1]) (to_away[k,t]+to_homel[k,t])
<= (slot[i,k]-slot[i,jl)+
(slot[j,kl-slot[i,jl)+
(slot[i,k]-slot[j,k1) -1;

Fig. 3. Break Formulation



References

1. Armstrong, J. and R.J. Willis. 1993. “Scheduling the cricket world cup: a case
study”, Journal of the Operational Research Society 44, 1067-1072.

2. Ball, B.C. and D.B. Webster. 1977. “Optimal scheduling for even-numbered team
athletic conferences”, AIIE Transactions 9, 161-169.

3. Bean, J.C. and J.R. Birge. 1980. “Reducing traveling costs and player fatigue in the
National Basketball Association”, Interfaces 10, 98-102.

4. Cain, W.0., Jr. 1977. “A computer assisted heuristic approach used to schedule the
major league baseball clubs”, in Optimal Strategies in Sports, S.P. Ladany and R.E.
Machol (eds.), North Holland, Amsterdam, 32-41.

5. Campbell, R.T. and D.-S. Chen. 1976. “A minimum distance basketball scheduling
Problem”, in Management Science in Sports, R.E. Machol, S.P. Ladany, and D.G.
Morrison (eds.), North-Holland, Amsterdam, 15-25.

6. Colbourn, C.J. 1983. “Embedding partial Steiner triple Systems is NP-complete”,
Journal of Combinatorial Theory, Series A, 35, 100-105.

7. Ferland, J.A. and C. Fleurent. 1991. “Computer aided scheduling for a sports
league”, INFOR 29, 14-24.

8. Henz, M. 1999. “Constraint-based Round Robin Tournament Planning”, Proceed-
ings of the 1999 International Conference on Logic Programming, Las Cruces, NM.

9. Henz, M. 2000. “Scheduling a Major College Basketball Conference: Revisted”, Op-
erations Research, to appear.

10. ILOG. 2000. “ILOG OPL Studio”, User’s Manual and Program Guide.

11. Lovasz, L. and M.D. Plummer. 1986. Matching Theory, North Holland, Amster-
dam.

12. Nembhauser, G.L. and M.A. Trick. 1998. “Scheduling a Major College Basketball
Conference”, Operations Research, 46, 1-8.

13. Régin, J.-C. 1999. “Minimization of the Number of Breaks in Sports Scheduling
Problems using Constraint Programming”, DIMACS Workshop on Constraint Pro-
gramming and Large Scale Discrete Optimization.

14. Régin, J.-C. 2000. “Modeling with Constraint Programming”, Dagstuhl Seminar
on Constraint and Integer Programming.

15. Rosa, A. and W.D. Wallis. 1982. “Premature sets of 1-factors or how not to schedule
round robin tournaments”, Discrete Applied Mathematics, 4, 291-297.

16. Russell, K.G. 1980. “Balancing carry-over effects in round robin tournaments”,
Biometrika 67, 127-131.

17. Russell, R.A. and J.M Leung. 1994. “Devising a cost effective schedule for a baseball
league”, Operations Research 42, 614-625.

18. Schaerf, A. 1999. “Scheduling Sport Tournaments using Constraint Logic Program-
ming”, Constraints 4, 43-65.

19. Schreuder, J.A.M. 1980. “Constructing timetables for sport competitions”, Math-
ematical Programming Study, 13, 58-67.

20. Schreuder, J.A.M. 1992. “Combinatorial aspects of construction of competition
Dutch Professional Football Leagues”, Discrete Applied Mathematics 35, 301-312.

21. Wallis, W.D. 1983. “A tournament problem”, Journal of the Australian Mathe-
matics Society Series B, 24, 289-291.

22. Walser, J.P. 1999. Integer Optimization by Local Search: A Domain-Independent
Approach, Springer Lecture Notes in Artificial Intelligence 1637, Springer, Berlin.

23. de Werra, D. 1980. “Geography, games, and graphs”, Discrete Applied Mathemat-
ics 2, 327-337.



24. de Werra, D. 1988. “Some models of graphs for scheduling sports competitions”,
Discrete Applied Mathematics 21, 47-65.

25. de Werra, D., L. Jacot-Descombes, and P. Masson. 1990. “A constrained sports
scheduling problem”, Discrete Applied Mathematics 26, 41-49.

26. Willis, R.J. and B.J. Terrill. 1994. “Scheduling the Australian state cricket season
using simulated annealing”, Journal of the Operational Research Society 45, 276-
280.

27. Wright, M. 1994. “Timetabling county cricket fixtures using a form of tabu search”,
Journal of the Operational Research Society 45, 758-770.



